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Abstract  

Good estimates for the tails of loss severity distributions are essentials for pricing or positioning high-excess 
loss layers (in reinsurance). Extreme value theory (EVT) provides a framework to formalize the study of 
behaviour in the tails of loss severity distributions. In EVT, the excess losses over a high  threshold are 
modelled using generalized Pareto distribution (GPD).  In any data analysis, there are various layers of 
uncertainty such as parameter and/or model uncertainty. These uncertainities are magnified in extreme value 
analysis. The aim of this study is to obtain fuzzy price for high excess loss layer when GPD provides good 
fitting to the tail of claim data. For this purpose, parameters of GPD are estimated using Buckley’s approach. 

Keywords: Buckley’ s approach;  Extreme value theory;  Fuzzy parameter estimation; Fuzzy pricing for high 
excess of loss layer; Generalized Pareto distribution. 

Özet  

Kuyruk bölgesi genelleştirilmiş Pareto dağılımı ile modellendiğinde  
hasar fazlasının bulanık fiyatlandırması

Reasüransta, hasar şiddeti dağılımlarının kuyruk bölgesinin doğru tahmini fiyatlandırma ve hasar fazlasının
belirlenmesinde önemlidir. Hasar şiddeti dağılımlarının kuyruk bölgesinin modellenmesinde uç değer 
teorisinden yararlanılmaktadır. Uç değer teorisinde, oldukça yüksek bir eşik değerini aşan hasarlar 
genelleştirilmiş Pareto dağılımı (GPD) kullanılarak modellenmektedir. Herhangi bir veri analizinde, 
parametre ve/veya model belirsizliği gibi çeşitli belirsizlikler sözkonusudur. Uç değer analizinde, bu 
belirsizlikler daha da artmaktadır. Bu çalışmanın amacı, hasar verisinin kuyruk bölgesine GPD’nın iyi uyum 
sağlaması durumunda hasar fazlasının bulanık fiyatlarının elde edilmesidir. Bu amaçla, Buckley’ in 
yaklaşımı kullanarak GPD’ nın parametreleri tahmin edilmiştir.  

Anahtar sözcükler: Buckley yaklaşımı; Bulanık parametre tahmini; Genelleştirilmiş Pareto dağılımı;
Hasar fazlasının bulanık fiyatlandırması; Uç değer teorisi. 
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1. Introduction 

Determining the fair value of price is one of the most difficult and most important aspects of the insurance 
business. Price directly affects the demand for an insurance product. If premiums are set too low, it can 
quickly deprive of insurance company’ s capital; or they are set too high, the insurers will lose their 
competitiveness and as a result their insureds. 

In non-life insurance, although the probabilities of large claims are relatively low, they usually represent 
the greatest part of indemnities paid by the company and may put the company under financial difficulties. 
Therefore, modeling large losses has great importance for both insurer and reinsurer. Although a large 
number of small losses that do not result in liabilities for the reinsurer are not reported by the insurance 
company, there are a small number of large losses that are unlikely to occur but once they occur they 
might cause substantial losses to the reinsurer. 

In the case of pricing high excess of loss layers, the reinsurer’s concern lies in those rare events that might 
cause very large losses to the primary insurer and that therefore are likely to affect the reinsurer. Also, it is 
of interest to have good explanatory models for those large losses in order to calculate premiums that are 
neither too low nor too high. 

Hence, a real understanding of statistical modeling for extreme events became of great interest among 
pricing staff and underwriters in many insurance and reinsurance companies. 

If a reinsurer is using historical information to find statistical models for pricing high excess of loss layers, 
then he/she would be more interested in good models for the largest losses [23]. Extreme value theory 
(EVT) provides solid fundamentals for the statistical modeling of such events. 

Beirlants and Teugels [4] and Embrecht and Klüppelberg[14] have argued that EVT motivates a number 
of sensible approaches to this problem. In particular, the peak over thresholds has been advocated in this 
context (Rootzen and Tajvidi [27], McNeil [24]). For many different underlying distributions, excess 
losses over high thresholds are modeled using generalized Pareto distribution (GPD). Embrechts et al. [15] 
give detailed summary and analytical proofs of all the properties of extreme value distributions including 
GPD. In the meantime, Hosking and Wallis [19] study approximate confidence intervals of the parameters 
and quantile estimation for GPD.  

There is uncertainty while pricing insurance contracts. The insurer wants to be sure that adequate 
premiums are charged for any line of business. However, when it comes to extreme events or 
observations, the insurer/reinsurer needs to make inferences about possible occurrences outside the 
observations where there is very little information, therefore the uncertainty of any estimator is even 
higher.  

While determining prices, one must take into account different levels of uncertainty such as parameter, 
model and data uncertainties. 

Fuzzy logic proposed by Zadeh [33] enables us to deal with more general sources of uncertainty in both 
empirical data and/or models for data analysis. 

Fuzzy set theory which introduces sets of objects whose boundaries are not sharply defined aims at 
modeling imprecise information which exists in real world situations. Fuzzy set theory could provide 
decision procedures that are much more flexible than those originating from conventional set theory [22].  

Derrig and Ostaszewski [11] pointed out that deregulation and global competition of the last two decades 
have opened the door for new methodologies among them being fuzzy methods and more progress in this 
area would be seen in the view of increasing competitiveness and globalization of the insurance industry. 
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In the actuarial field, Fuzzy Set Theory is used to model problems that require a great deal of actuarial 
subjective judgment and problems for which the information available is scarce or vague. 

The earliest work directly applying fuzzy set theory to actuarial science was by DeWit [12] where he 
pointed out that the process of insurance underwriting is indeed fraught with uncertainty which may not be 
properly described by probability. It was subsequently applied to insurance claim cost forecasting by 
Cummins and Derrig [7], to ratemaking and risk classification by Verrall and Yakoubov [31], Derrig and 
Ostaszewski [9], Young [32], Ebanks et al. [13], to underwriting and reinsurance decisions by DeWit [12], 
Lemaire [22] and Horgby et al. [18] and to pricing by Lemaire [22], Karkowski and Ostaszewski [20], 
Berliner and Buehlmann [5], Babad and Berliner [2], Terceno et al. [30], Cummins and Derrig [8], Derrig 
and Ostaszewski [10] and Simonelli [29], Young [32]. A potential range of actuarial applications is 
discussed in Ostaszewski [25].  

GPD providing good estimates for the tails of loss severity distributions is very important for pricing in 
reinsurance. Using traditional pricing method, actuary calculates single premium. However, this premium 
usually can not be charged due to competitiveness and globalization in insurance market. For the 
management it is important to know how much more or less than this single premium can be charged. 
Fuzzy price may be very valuable tool in assessing the range of price to be considered as well as in 
informing the management about uncertainty of the price calculation process.  

As the aim of this study is to obtain fuzzy price for high excess loss layer when GPD provides good fitting 
to the tail of loss severity data, parameters of GPD are estimated using Buckley’ s approach which is 
based on a set of confidence interval to produce a triangular shaped fuzzy number.  

The structure of the paper is as follows. In the next section, we briefly give information about fuzzy sets 
and numbers. Section 3 includes the estimation of the parameters using Buckley’s approach. In Section 4, 
we present information about EVT. Fuzzy parameter estimation of GPD is given in Section 5. Section 6 
includes pricing high excess loss layer using traditional and fuzzy respectively. Numerical example is 
provided in Section 7. Finally, Section 8 concludes the paper.  

2. Fuzzy sets and fuzzy numbers  

Zadeh [33] introduced for the first time sets of objects whose boundaries are not sharply defined in the 
paper titled as “Fuzzy Sets” which gave rise to enormous interest among researchers and initiated fuzzy 
set theory. Fuzzy set theory aims at modeling imprecise information which exists in real world situations. 
As many practical problems are extremely complex and ill-designed, it is difficult to model with precision.  

There is a clear distinction between fuzzy sets and probability theory. Although probability concepts are 
derived from considerations about the uncertainty of propositions about the real world, fuzzy concepts are 
closely related to the multi-valued logic treatments of issues of imprecision in the definition of entities. 
Therefore, if there is a problem to be modeled which has some inherent imprecision, fuzzy set theory 
provides a better framework than probability theory. Dealing with problems in which some of the 
principal sources of uncertainty are non-statistical in nature, the effectiveness of probability theory is 
limited.  

A class of objects whose boundaries are not sharply defined is called as a fuzzy set. If { }=X x denote a 
collection of objects, a fuzzy set A in X is a set of ordered pairs  

{ }, ( ) ,= ∈AA x x x Xµ

where ( )A xµ is the grade of membership of x in A , ( ) :A x X Mµ → is a function from X to membership 
space M and produces values in [0, 1] for all x. Hence the degree of membership of x in A is represented 
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by ( )A xµ which is a function having values between 0 and 1 representing respectively the lowest and 
highest grade of membership [22].  

A fuzzy number which is the main instrument used in Fuzzy Set Theory for quantifying uncertain 
quantities is a fuzzy subset of the real line whose highest membership values are clustered around a given 
real number. The membership function is monotonic on both sides of this real number. Depending on the 
situation, there are different classes of membership functions such as triangular, trapezoidal, Gaussian and 
generalized bell shape as given in Figure 1 [28]. 

Figure 1. Examples of membership functions. 

In practice, triangular fuzzy numbers are preferred as they are easy to handle arithmetically and can be 
interpreted intuitively. A triangular fuzzy number �A can be symbolized as ( , , )=� a aA a l r where a is the 
centre and al and ar are the left and right spreads, respectively as seen in Figure 2.  

Figure 2. A triangular fuzzy number ( , , )=� a aA a l r .

The membership function ( )�A xµ which characterizes a triangular fuzzy number is:  
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In addition to membership function, α -cuts ( A α ), slices through a fuzzy set producing regular (non-
fuzzy) sets, also characterize a triangular fuzzy number:  

[ ( ), ( )] [ (1 ), (1 )].= = − − − −a aA A A a l a rα α α α α

As seen in Figure 2, from a statistical point of view, it can be said that, if �A is a random variable, a is its 
mode and ( )�A xµ plays a similar role to the density function. Also, A α may have a similar meaning to a 
confidence interval [1]. 

3. Parameter estimation using Buckley’ s approach  

Let 1 2, , ..., nX X X be a random sample from a distribution with probability density (or probability mass) 
function ( ; )f x θ for single parameter θ , with observed value 1 2, , ..., nx x x . Assume that θ is unknown 
parameter and it must be estimated. Let ( )1, ...,= nY u X X be a statistics used to estimateθ . Given the 
values of these random variables ,1= ≤ ≤i iX x i n , we obtain a point estimate ( )1 n

ˆ u x ,  ,  x  = = …yθ for θ .
Since we never expect this point estimate to exactly equal to θ , we often also compute a ( )1 100%− β

confidence interval for θ .

Denote a ( )1 100%− β confidence interval for θ by [ ]1 2( ), ( )θ β θ β for 0.01 1≤ ≤β . Add to this interval 
ˆ ˆ, 
 θ θ for the 0% confidence interval for θ . As seen in Figure 3, placing these confidence intervals one on 

top of the other, one can obtain a triangular shaped fuzzy number θ whose α -cuts are the following 
confidence intervals: 

[ ] ( ) ( )1 2,=   
�θ α θ α θ α for 0,01 1< <α .

Figure 3. Fuzzy parameter estimation for θ .



Y. Gençtürk v.d. / İstatistikçiler Dergisi 4 (2011) 16-30 
 

21

Hence, more information about θ is used rather than just a point estimate, or just a single interval 
estimate. It is easy to generalize Buckley’s method in the case where θ is a vector of parameters [6]. 

4. Extreme value theory 

EVT provides a framework to formalize the study of behavior in the tails of a distribution. When 
modeling the maxima of a random variable, EVT plays the same fundamental role as the Central Limit 
theorem plays when modeling sums of random variables. In both cases, the theory tells us what the 
limiting distributions are.  

To identify the extremes in real data, there are generally two approaches: block maxima method and peaks 
over threshold method. Although the block maxima method, a traditional method, is used to analyze data 
with seasonality, the threshold method is widely used in recent application as it uses data more efficiently 
[17]. 

In the following subsections, the fundamental theoretical results of these two methods are given. 

4.1. Distribution of maxima 

Suppose 1 2, , ..., nX X X are independent and identically distributed (i.i.d.) random variables from an 
unknown distribution F. Let us denote the maximum of the first n observations by ( )1, ... ,  =n nM max X X
and suppose further that the sequences of real numbers 0>na and nb can be found. The sequence of 
normalized maxima ( )−n n nM b a converges in distribution: 

{( ) } ( ) ( )− ≤ = + →n
n n n n nP M b a x F a x b H x , as →∞n (1) 

for some non-degenerate distribution function H(x). If this condition holds it can be said that F is in the 
maximum domain of attraction of H and be written as ( )∈F MDA H .

Fisher and Tippett [16] showed that 

( )∈ ⇒F MDA H  H is of the type Hξ for some ξ.

Thus, if suitably normalized maxima converge in distribution, then the limit distribution must be an 
extreme value distribution for some value of the shape parameter ξ, location parameter µ and scale 
parameter σ [24]. 

In the mean time, if the condition given in Equation (1) holds, then H belongs to one of the three standard 
extreme value distributions: 

Frechet: ( )
0 , 0

, 0
−−

≤Φ = 
>

x

x
x

e x
αα where 0>α

Weibull: ( )
( ) , 0

1 , 0

− − ≤Ψ = 
>

xe xx
x

α

α where 0>α .

Gumbel: ( ) −−Λ =
xex e where ∈x R
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As Frechet distribution has a polynomially decaying tail, it fits well to heavy tail distributions. The class 
of distributions where the tail decays like a power function includes the Pareto, Burr, Loggamma, Cauchy 
and t-distributions as well as various mixture models. Gumbel distribution which has exponentially 
decaying tail suits well to thin tail distribution. Normal, Exponential, Gamma and Lognormal distributions 
are distributions in the maximum domain of attraction of the Gumbel. Weibull distribution is the 
asymptotic distribution of the finite endpoint distributions. Distributions in the maximum domain of 
attraction of Weibull are Uniform and Beta distributions. 

Figure 4 involves the probability density functions for the standard Frechet,Weibull and Gumbel 
distributions. 

 

Figure 4. Densities for the Frechet, Weibull and Gumbel functions. 

One-parameter representation of these standard extreme value distributions known as the Generalized 
Extreme Value (GEV) distribution is as follows: 

 
1(1 ) 0

( )
0

−

−

− +

−

 ≠= 
=

x

x

e

e if
H x

e if

ξξ

ξ

ξ

ξ
(2) 

 
where x is such that 1 0+ >xξ and ξ is shape parameter or tail index. 

GEV distribution is obtained by setting 1−=ξ α for the Frechet distribution ( 0>ξ ), 1−= −ξ α for the 
Weibull distribution ( 0<ξ ) and by interpreting the Gumbel distribution as the limit case for ξ = 0 [17]. 

4.2. Distribution of exceedances  

Suppose we have a sequence of i.i.d. observations 1 2, , ..., nX X X from an unknown distribution function F 
an example of which is given in Figure 5 and are interested in estimating the distribution function uF of 
values of x above a certain threshold u.

Figure 5. Distribution function F and conditional distribution function uF .
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The distribution function Fu is called the conditional excess distribution function and is defined as 

( ) ( )= − ≤ >uF y P X u y X u , 0 ≤ ≤ −Fy x u (3) 
 
where  = −y x u are the excesses and ≤ ∞Fx is the right endpoint of F. Fu can also be written in terms of 
F as follows: 

( ) ( ) ( ) ( )( ) .
1 ( ) 1 ( )
+ − −= =
− −u

F u y F u F x F uF y
F u F u

 (4) 

Balkema and de Haan [3] and Pickands [26] show that conditional excess distribution function for a large 
u is GPD, the limiting distribution of the excesses, under MDA condition. That is, when →∞u

,( ) ( )≈uF y G yξ σ  

where , ( )G yξ σ  is GPD whose distribution function is: 

1

,

1 1 0
( )

1 0

−

−

  − + ≠  =   
 − =

y

y if
G y

e if

ξ

ξ σ

σ

ξ
ξ

σ
ξ

for [0, ( )]∈ −Fy x u if 0≥ξ and [0, ]∈ −y σ ξ if 0<ξ .

GPD can also be expressed as a function of x as follows:  

1
, 1 (1 ( ) )−= − + −G x u ξ
ξ σ ξ σ  

where = +x u y .

Figure 6 illustrates the shape of ,Gξ σ when ξ takes a negative, a positive and a zero value when the scaling 
parameter σ is equal to one [17]. 

Figure 6. Shape of the generalized Pareto distribution , ( )G xξ σ  for σ = 1. 

5. Fuzzy parameter estimation of GPD  

As mentioned in Section 3, Buckley introduced a method of estimation of a parameter which uses a set of 
confidence intervals to produce a triangular shaped fuzzy number for the estimator. In other words, 
Buckley estimates the parameters of a statistical model using set of confidence intervals. Therefore, the 
confidence intervals of the parameters of GPD should be constructed in order to obtain parameter 
estimation of GPD using Buckley’s approach. 
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There are varieties of methods including the maximum likelihood method, the method of moment and the 
method of probability weighted moments to fit GPD to data on the excesses of high threshold. Parameter 
estimators of GPD obtained using these methods are asymptotically normally distributed for some values 
of the shape parameter.  

If ˆ( )h θ is asymptotically normally distributed with ( ) ( )ˆvar ~n h vθ θ as →∞n , then the confidence 

interval for ( )h θ with asymptotic confidence level β is 

1 1 2 1 1 2
(1 ) 2 (1 ) 2

ˆ ˆ ˆ ˆ[ ( ) { ( )} ( ) ( ) { ( )} ] 1− −
− −− ≤ ≤ + = −P h n v z h h n v zβ βθ θ θ θ θ β (5) 

where zβ is the thβ quantile of the standard normal distribution [19].  

As maximum likelihood estimation of the parameters of GPD is used in our application, asymptotic 
behavior of maximum likelihood estimators and their confidence intervals are given here.  

For 0.5> −ξ , the maximum likelihood estimates ˆ ˆ( , )
u uN Nξ σ based on sample of uN excesses of high 

threshold u are asymptotically normally distributed [24]:  

( ) ( )
( ) ( )

2
1 2

2

ˆ 1 1,
ˆ 1 2 1

      + +  →        + +      

u

u

N d
u

N

N N
ξ ξ ξ σ ξ

σ σ ξ σ ξσ
, as →∞uN (6) 

From Equations (5) and (6), the confidence interval for the shape parameter ξ with asymptotic confidence 
level β is: 

1 2 1 22 2
1 1

(1 ) 2 (1 ) 2
(1 ) (1 )ˆ ˆ 1− −

− −

       + + − ≤ ≤ + = −       
        

P n z n z
n nβ β
ξ ξξ ξ ξ β (7) 

and the confidence interval for the scale parameter σ with asymptotic confidence level β is: 

1 2 1 22 2
1 1

(1 ) 2 (1 ) 2
2 (1 ) 2 (1 )ˆ ˆ 1− −

− −

       + + − ≤ ≤ − = −       
        

P n z n z
n nβ β

σ ξ σ ξσ σ σ β (8) 

The estimators of the parameters of GPD as a triangular shaped fuzzy numbers can be obtained by placing 
the confidence intervals one on the top of the other for 0.01 1≤ ≤β in Equations (7) and (8). 

6. Pricing high excess loss layer 

Pricing an insurance product is one of the most difficult and most important aspect of the insurance 
business. In many real-world situations, the single (crisp) premium calculated by the actuary is not the 
price that is eventually charged. The buyer may respond with a counteroffer; the insurer’s management 
may decide to charge more or less than the actuary’s recommendation; and so on. The traditional crisp 
premium conveys no information that is helpful in deciding how much more or less than the crisp 
premium it is ‘‘reasonable’’ to charge. Fuzzy premiums, on the other hand, provide an analogue to the 
crisp premium in the form of the fuzzy mean value but also provide information on the strength of 
membership in the fuzzy set of ‘‘acceptable’’ or nearby premiums [8]. 

Fuzzy price may be a very valuable tool in assessing the range of price to be considered as well as in 
informing the management about uncertainty of the price calculation process. 
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GPD providing good estimates for the tails of loss severity distributions is very important for pricing in 
reinsurance. As traditional pricing methods have not been accounted the degree of uncertainty and also 
uncertainty is always present in pricing, in this study a reasonable interval for price to be charged from the 
insureds is obtained by estimating the parameters of GPD using fuzzy approach. 

In the following subsections, traditional pricing for high excess loss layer is given and this method is 
converted into fuzzy pricing by estimating the parameters of GPD using Buckley’s approach. 

6.1. Traditional pricing  

Traditional price for a general layer ( , )r R is:  

 
( ) ( ) ( )(1 ( ))= − + − −∫

R

X X
r

P x r f x dx R r F Rδ δ

 (9) 

where ( ) ( )
X X

f x dF x dxδ δ= denotes the density function for the losses truncated at δ . We can estimate 
( )

X
F xδ for x > u using the tail estimation procedure and fitting GPD to the excesses by choosing a high 
threshold u<r. The estimate of ( )

X
F xδ is: 

ˆ ˆ, ,
ˆ ( ) (1 ( )) ( ) ( )= − +n nX

F x F u G x F uδ ξ µ σ (10) 

where ξ̂ and σ̂ are maximum-likelihood estimators and ( )nF u is an estimator of { }P X uδ ≤ based on the 
empirical distribution function of the data [24].  

6.2. Fuzzy pricing  

As the parameters of GPD are estimated as triangular fuzzy numbers, fuzzy prices for high excess loss 
layer can be obtained using integration of fuzzifying function over a non fuzzy interval.  

In non-fuzzy interval [ ],a b R∈ , let the fuzzifying function have fuzzy value ( )f x for x ∈ [a,b]. 

Integration ( ),I a b of the fuzzifying function in [a,b] is defined as follows: 

( ) ( ) ( ) [ ], , | 0,1− +   = + ∈  
   
∫ ∫
b b

a a

I a b f x dx f x dxα α α α  

Here +fα and −fα are α -cuts functions of ( )f x . Plus sign (+) in the formulation explains the enumeration 
in fuzzy set but not addition. Hence the total integration is obtained by aggregating integrations of each 
α -cut function. If a-cut operation is applied to the fuzzifying function +fα or −fα can be calculated. 
Therefore, integration can be written as below:  

( )− −= ∫
b

a
a

I f x dxα and ( )+ += ∫�
b

a
a

I f x dxα

As a result, the possibility of  −
aI or +

aI to be a member of total integration ( ),I a b is α [21].  
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As the parameters ξ and σ of GPD are obtained using fuzzy approach, ˆ ( )
X

F xδ given in Equation (10) is a 
fuzzifying function of the distribution function for the losses truncated at δ . Therefore, Equation (9) can 
be expressed as: 

( ) ( ) ( ) ( )( ) [ ] [ ] [ ]

( ) ( ) ( ) ( )( ) [ ] [ ] [ ]

2 2

2 2

1 | 0,1 , ,

1 | 0,1 , ,

R

X X
r
R R

x x
X X X

r r

P x r f x dx R r F R

x f x d r f x d R r F R

δ δ

δ δ δ

α ξ ξ α σ σ α

α ξ ξ α σ σ α

= − + − − ∈ ∈ ∈

= − + − − ∈ ∈ ∈

∫

∫ ∫
 (11) 

where P is fuzzy price for high excess loss layer.  

7. Applications 

As mentioned before, the aim of this study is to obtain fuzzy price for high excess loss layer when GPD 

provides good fitting to the tail of claim data. As the point estimates of the parameters of GPD are 

sufficient to calculate fuzzy price for the high excess loss layer, in this study the maximum likelihood 

estimates of the GPD calculated by  McNeill [24] for Danish fire losses over 1 Million Danish Krone 

comprising 2156 losses from 1980 to 1990 are used. McNeill [24] carried out a number of exploratory 

graphical methods providing useful preliminary information about the data and especially in tail and 

concluded that GPD is best fitting distribution among the truncated Lognormal, the ordinary Pareto and 

the GPD and optimal threshold value is 10.  

The maximum likelihood estimates of the GPD for optimal threshold (10) calculated by McNeill [24] are 

given in Table 1. 

Table 1. Maximum likelihood estimates for Danish Fire Losses. 

Model u Excesses ξ̂ σ̂

GPD 10 109 0.5 6.9

In this study, traditional and fuzzy prices are calculated for high excess loss layers from 100 to 150. Using 
maximum likelihood estimates given in Table 1 and Equation (9), traditional price for high excess loss 
layer from 100 to 150 is calculated as  P=0.0258.  

While calculating the traditional price, the degree of uncertainty has not been accounted and this price has 
no information about how much more or less is reasonable to charge.  

Estimating the parameters of GPD using fuzzy approach, a reasonable interval for price can be obtained. 
In order to obtain fuzzy parameter estimation we need estimation of the parameters using classical 
approach such as maximum likelihood. Therefore, the maximum likelihood estimates in Table 1 are used 
to obtain fuzzy estimation.   

As fuzzy parameter estimations of GPD are obtained by Buckley’s approach which is based on a set of 
confidence intervals to produce a triangular shaped fuzzy number, firstly we construct the confidence 
intervals for shape parameter ξ and scale parameter σ .
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The confidence interval for shape parameter ξ with asymptotic confidence level 0.05=β is: 

{ }0,473028 0,526972 0.95≤ ≤ =P ξ

So, fuzzy parameter estimate for shape parameter ξ obtained using confidence intervals for 0.01 1≤ ≤β
are given in Figure 7. 

Figure 7. Fuzzy estimate of ξ .

The confidence interval for scale parameter σ with asymptotic confidence level 0.05=β is: 

{ }6.685099 7,114901 0.95≤ ≤ =P σ

So, fuzzy parameter estimate for scale parameter σ obtained using confidence intervals for 0.01 1≤ ≤β
are given in Figure 8. 

Figure 8. Fuzzy Estimate of  σ .

After estimating the parameters of GPD using fuzzy approach, fuzzy prices for high-excess loss layer 
from 100 to 150 are calculated using Equation (11) for different α -cuts. The results are given in Table 2. 
The graph of fuzzy high excess loss layer prices is also given in Figure 9.  
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Table 2. Fuzzy high-excess loss layer prices for different α -cuts. 

0 0,2 0,4 0,6 0,8 1 

0,0208 ; 0,0314 0,0218 ; 0,03028 0,0228 ; 0,02916 0,0238 ; 0,02804 0,0248 ; 0,02692 0,0258 ; 0,0258 

As seen in Table 2, fuzzy price for α = 1 is equal to traditional price calculated using Equation (9). 

The main advantage of estimating the price by means of triangular fuzzy numbers is to obtain the 
variability of the price. Fuzzy price involves traditional price which is the center of the triangular fuzzy 
number and the spreads of the triangular fuzzy numbers give the variability of traditional price in other 
words give information about how much more or less than the traditional price can be charged. As seen in 
Table 2, the fuzzy price spreads from 0.0208 to 0.0314 for α =0 denoting maximum uncertainty about the 
crisp result 0.0258. For α =0.8, minimum and maximum possible values of price are 0.0248 and 0.02692. 
When uncertainty is minimum, α is taken as 1. So, it can be said that the higher value of α , the higher 
the confidence in the price.  

Figure 9. Fuzzy high-excess loss layer prices 

The choice of α is subjective. Managements decide the value of α by taking into account the real-world 
situation. As buyer makes a price offer, fuzzy price is a valuable tool for the management to decide 
whether the buyer’ s offer is acceptable or not.   

Fuzzy price involves not only minimum and maximum possible values (the range of price) for different 
α -cuts but also traditional price. The prices outside of this range are not feasible. Charging a price lower 
than minimum of this range may put the insurance company under financial difficulties and also setting a 
price higher than maximum value of this range may result in losing competitiveness.  

8. Conclusion 

Due to competitiveness and globalization in insurance market, the point estimation of price calculated by 
an actuary may not be charged from the insured which convey no information that is helpful in deciding 
how much more or less it is reasonable to charge. 

Fuzzy price, on the other hand, may be a very valuable tool in assessing the range of price to be 
considered as well as in informing the management about uncertainty of the price calculation process. 
Uncertainty is always present when fitting a loss distribution to historical data especially in the case of 
fitting the tail of the loss distribution as there would be very few observations which fall in the tail of the 
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distribution. It is known that fitting GPD to insurance losses which exceed high threshold is a useful 
method for estimating the tails of the loss severity distribution. As the confidence interval for the 
parameters of GPD allows us to judge the uncertainty of the estimation, in this study parameter estimators 
of GPD are obtained using Buckley’s approach based on a set of confidence intervals which is a way of 
dealing with uncertainty. Estimating the parameters of GPD using fuzzy enables us to calculate a 
reasonable interval for high excess loss layer prices, a reference quantity not only for the fair value of 
prices but also for its variability, to be charged from the insured. 
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