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Research Article 

Abstract − Support Vector Machine (SVM) is a supervised machine learning method used for 

classification and regression. It is based on the Vapnik-Chervonenkis (VC) theory and Structural Risk 

Minimization (SRM) principle. Thanks to its strong theoretical background, SVM exhibits a high 

performance compared to many other machine learning methods. The selection of hyperparameters and 

the kernel functions is an important task in the presence of SVM problems. In this study, the effect of 

tuning hyperparameters and sample size for the kernel functions on SVM classification accuracy was 

investigated. For this, UCI datasets of different sizes and with different correlations were simulated. 

Grid search and 10-fold Cross-Validation methods were used to tune the hyperparameters. Then, SVM 

classification process was performed using three kernel functions, and classification accuracy values 

were examined. 

Keywords − Support vector machines, kernel function, tune parameter 

Mathematics Subject Classification (2020) − 62H30, 62P99 

1. Introduction 

The first mentions on Support Vector Machine (SVM) were made by Vapnik in 1979. However, after the 

presentation at the conference named COLT (Conference on Computational Learning Theory), held in 

America in 1992 [1], the use of SVM became widespread. Then, it was officially introduced by Vapnik in 

1995 [2]. 

The SVM theory is based on the idea of Vapnik-Chervonenkis (VC) theory and Structural Risk 

Minimization (SRM). The VC theory is a subbranch of statistical learning theory. The main goal in learning 

problems is to reach the most accurate results with the minimum error. For this, the expected risk is desired to 

be minimum. The basic idea in SRM principle and VC theory is to select the model with the correct level of 

complexity to minimize the expected risk or generalization error among many models. The SRM principle 

aims to minimize the upper bound of the expected risk. For a function with distribution, the SRM principle 

converges to the optimal solution. SVM tries to keep both experimental risk and VC dimension to a minimum 

so that the expected risk reaches the minimum [3]. 

SVM aims to classify the observations most accurately by finding the optimal separating hyperplane 

between two or more classes. It is used in linear and non-linear classification and regression problems. Datasets 

in which training data cannot be separated linearly are transferred to a higher dimensional feature space using 

mapping functions. The dataset mapped to the feature space can be linearly separated using kernel functions 
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[4]. In feature space, SVM tries to solve the quadratic optimization problem to find the optimal separating 

hyperplane. 

SVM is used in many different domains: pattern recognition (handwriting [5], face [6], speech [7], 

emotion [8], disease diagnosis [9], treatment success [10], time series [11], criminology [12], stock market 

prediction [13], etc.). 

This study aims to introduce the two-class SVM classification theory and examine the effects of sample 

size and optimal hyperparameter selection on classification accuracy. Besides, determining the optimal values 

of the hyperparameters of kernel functions has a significant impact on SVM results. For tuning the 

hyperparameters, many algorithms have been proposed, such as grid search, random search, Bayesian 

optimization, simulated annealing, particle swarm optimization, genetic algorithm, etc. [14]. In this study, we 

used a grid search CV algorithm to tune hyperparameters. After tuning the hyperparameters, the SVM 

classification results were examined on the simulated dataset with different scenarios.  

The rest of the paper is organized as follows. A brief review of the theory of SVM is described in Section 

2. The experiments are presented in Section 3. Results are given in Section 4, and we conclude the paper with 

a summary of results by emphasizing the importance of this study and mentioning some viable future work. 

2. Support Vector Machines 

The theory of SVMs in classification problems is given in this section [15,16]. SVMs are used to optimally 

separate dataset belonging multiple classes by specifying a hyperplane. With linear SVM, the dataset can be 

separated completely (hard margin) or partially (soft margin), and the dataset cannot be separated linearly in 

any way with non-linear SVM. 

2.1.  Linear Support Vector Machines 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), 𝑥 ∈ 𝑅𝑛 be the training dataset for SVM with separable two-class labels such 

as 𝑦 ∈ {+1, −1}. The main purpose of SVM is to find the most suitable separating hyperplane that will enable 

to classify training observations correctly. Hyperplane represents a separating surface in a multidimensional 

space. There can be thousands of different hyperplanes between two classes, so the most suitable (optimal) 

hyperplane must be found for strong classification accuracy and better generalization performance. 

To find the optimal separating hyperplane, it is necessary to determine the distance between training 

observations with different two-class labels called Margin. The maximum margin classifier will give the 

optimal separating hyperplane. Separating hyperplanes are formulated as in Equation 1, 

 𝐷(𝑥) = (𝑤. 𝑧) + 𝑏 = 0 (1) 

and should provide Equation 2 for both classes. 

 𝑦𝑖[(𝑤. 𝑧) + 𝑏] ≥ 1, 𝑖 = 1, … , 𝑛 (2) 

The distance between hyperplane and origin is 

  𝑑 =
|𝑏|

‖𝑤‖
 (3) 

in which 𝑏 and 𝑤 are the parameters of the optimal hyperplane. Here, | . | is the absolute value and ‖ . ‖ is the 

Euclidean norm of a vector. Assume two hyperplanes (+𝑑, −𝑑) for two-class label (+1, −1). Thus, the margin 

is computed as  

  margin =  𝑑+ − 𝑑− =
|1−𝑏|

‖𝑤‖
−

|−1−𝑏|

‖𝑤‖
=

2

‖𝑤‖
 (4) 

To maximize this margin (hard margin), the norm of 𝑤 is minimized. Hence, the primal form of the 

optimization problem obtained for the maximum margin classifier or, in other words, the optimal separating 

hyperplane is as follows: 
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  minimize 
1

2
‖𝑤‖2  

  subject to 𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) ≥ +1, 𝑖 = 1, . . , 𝑛 (5) 

The optimal hyperplane problem is a classical optimization problem and can be solved by the Lagrangian 

multiplier method and Krush Kuhn Tucker (KKT) conditions, so the problem transforms into the dual form, 

and the dual form of the problem is solved as in Equation 6, 

  maximize 𝑊(𝑥) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑧𝑖. 𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1   

  subject to ∑ 𝛼𝑖𝑦𝑖 = 0, 𝑖 = 1, … , 𝑛𝑛
𝑖=1  (6) 

The KKT theorem is important in the theory of SVM. According to KKT conditions, there are two 

different situations for 𝛼𝑖(𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) − 1) = 0, which are the correctly classified features outside of 

hyperplanes (𝛼𝑖 = 0) and the correctly classified features located on hyperplanes (𝛼𝑖 ≥ 0), called support 

vectors. The structure of an SVM is shown in Figure 1. 

 
Fig 1: The structure of an SVM 

2.2.  Non-Linear Support Vector Machines 

The previous sections mentioned that the dataset is completely and linearly separable (hard margin). Moreover, 

when the dataset is partially non-separable (soft margin), slack variables (ξ) are added to Equation 2, and the 

computations are performed as in the hard margin optimization. Then, separating hyperplane for the partially 

non-separable dataset is found as in Equation 7, 

   𝑦𝑖[(𝑤. 𝑧) + 𝑏] ≥ 1 − 𝜉𝑖 , 𝑖 = 1, … , 𝑛 (7) 

The optimal hyperplane for the partially non-separable case is obtained from Equation 8, 

  minimize 
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1   

  subject to 𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,   𝑖 = 1, . . , 𝑛, 𝜉𝑖 ≥ 0 (8) 

in which the regularization parameter C is constant. 

Non-linear SVM classifier is used in cases where training observations cannot be separated by a linear 

decision surface. Generally, datasets cannot be separated linearly in real analysis. For such problems, mapping 

functions are used to transform the input space in which training observations cannot be separated linearly into 

a higher dimensional feature space where observations can be linearly separated [17]. To access this aim, 

kernel functions are used because the transition to a higher dimensional space with mapping functions and 

processing with dot products in this space is computationally difficult and time-consuming. Kernel function 

𝐾 (. , . ) is given in Equation 9, 

   𝐾(𝑥𝑖 , 𝑥𝑗 ) = 𝑧𝑖. 𝑧𝑗 = 𝜑(𝑥𝑖). 𝜑(𝑥𝑗) (9) 
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The function satisfies Mercer’s theorem. The most known kernel functions are linear, radial basis 

function, polynomial, sigmoid, dot product, and two-layer neural network kernel [18]. Some kernel function 

algorithms are given in Table 1. 

Table 1. Kernel functions 

Kernel Functions Algorithms 

Linear 𝐾(𝑢′, 𝑣) = 𝑢′𝑣 

Polynomial 𝐾(𝑢′, 𝑣) = (𝑢′𝑣 + 1)𝑑  

Radial Basis Function 𝐾(𝑢′, 𝑣) = exp(−‖𝑢 − 𝑣‖2/𝜎2)  

The non-linear separating hyperplane can be found as 

   maximize 𝑊(𝛼) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1

𝑛
𝑖=1  

   subject to ∑ 𝑦𝑖𝛼𝑖 = 0,    0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛𝑛
𝑖=1  (10)   

and the decision function is as in Equation 11, 

   𝑓(𝑥) = sign(𝑤. 𝑧 + 𝑏) = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏𝑛
𝑖=1 ) (11)   

3. Experiments 

It is aimed to determine the optimal hyperparameters of the kernel function to be used in SVM classification 

and to examine the effect of these optimal values on the classification accuracy.  

For this purpose, firstly datasets with standard normal distribution according to different correlation levels 

and different sample sizes were created by using the "MASS" package in the R. Correlation levels for simulated 

datasets were determined as 0.25,0.50,0.75 and sample sizes were determined as 20,50,100 and 200, 

respectively. The number of features has been kept constant as 2.  

For these datasets, optimal hyperparameter selection was performed according to kernel functions with 

Grid search and 10-fold Cross Validation (CV) methods with 30 iterations. The intervals for the 

hyperparameters determined as in Table 2. 

Table 2. Hyperparameter searching intervals setting 

 Hyperparameters 

Kernel Function C Sigma Degree Scale 

Linear {1, 2, … ,20} - - - 

Radial Basis Function {1, 2, … ,20} {0.1, 0.6, 1.1, … ,10} - - 

Polynomial {1, 2, … ,20} - {1,2,3} {10−3, 10−2, … , 101} 

2 class-SVM classification process was carried out by using "e1071" packages. Then, datasets for 3 

different kernel functions (linear, polynomial and radial basis function) were analysed for optimal 

hyperparameter values and the kernel functions with the highest test accuracy were examined according to the 

obtained test prediction results. 

4. Results 

Firstly, optimal hyperparameters were selected according to 3 different correlation levels and SVM classifier 

performances were obtained for 3 different kernel functions when the number of observations was 20. Results 

were given in Table 3. 
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Table 3. Optimal values for kernel hyperparameters and classification accuracies when sample size was 20 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

 

Linear 

0.25 C=1 0.60 

20 0.50 C=1 0.60 

 0.75 C=1 0.75 

 

Polynomial 

0.25 d=2, s=1, C=1 0.60 

20 0.50 d=2, s=1, C=1 0.60 

 0.75 d=3, s=1, C=1 0.74 

 

RBF 

0.25 C=2,  𝜎=2.5 0.60 

20 0.50 C=2,  𝜎=2.6 0.60 

 0.75 C= 2,  𝜎=9.6 0.75 

In Table 3, it was observed that when the sample size was 20, optimal hyperparameter values got almost 

the same values according to different correlation levels. Similar results were obtained for 3 kernel functions 

of SVM classification accuracies. While the sample size was 20, the most accurate classification percentage 

was obtained when the correlation level was 0.75 for all 3 kernel functions. While the sample size was small, 

it was concluded that the classification accuracy varied according to the correlation levels, not the kernel 

functions. 

Secondly, for the number of observations 50, optimal hyperparameters were selected according to 3 

different correlation levels and test accuracy percentages were obtained for 3 kernel functions according to the 

parameters. Results were given in Table 4. 

Table 4. Optimal values for kernel hyperparameters and classification accuracies when sample size was 50 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

 

Linear 

0.25 C=5 0.89 

50 0.50 C=6 0.87 

 0.75 C=3 0.88 

 

Polynomial 

0.25 d=2, s=1, C=18 0.98 

50 0.50 d=2, s=1, C=17 0.95 

 0.75 d=3, s=1, C=18 0.99 

 

RBF 

0.25 C=2,  ,𝜎=1.6 0.99 

50 0.50 C=19, 𝜎=1.1 0.99 

 0.75 C=1,   𝜎=0.6 0.99 

In Table 4, while the number of observations 50 with different correlation levels, it was seen that although 

the optimal hyperparameter values were different, more accurate classification percentages were obtained with 

the polynomial and RBF kernel functions.  

The optimal hyperparameters were selected according to 3 different correlation levels and test accuracy 

percentages were obtained for 3 kernel functions according to the parameters for the number of observations 

100. Results were given in Table 5. 
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Table 5. Optimal values for kernel hyperparameters and classification accuracies when sample size was 100 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

100 Linear 

0.25 C=3 0.76 

0.50 C=4 0.78 

0.75 C=1 0.76 

100 Polynomial 

0.25 d=2, s=1, C=8 0.96 

0.50 d=2, s=1, C=8 0.92 

0.75 d=2, s=1, C=8 0.96 

100 RBF 

0.25 C=12, 𝜎 =1.1 0.92 

0.50 C=20, 𝜎 =0.6 0.92 

0.75 C=20, 𝜎 =1.1 0.88 

It is seen in the Table 5 that the highest classification accuracy values were obtained with the polynomial 

kernel. For the polynomial kernel, the result is that the optimal parameter values are the same despite different 

correlation levels. The same analyses were performed for the number of observations 200, and the results were 

obtained as in Table 6. 

Table 6. Optimal values for kernel hyperparameters and classification accuracies when sample size was 200 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

200 Linear 

0.25 C=2 0.92 

0.50 C=5 0.90 

0.75 C=2 0.90 

200 Polynomial 

0.25 d=2, s=1, C=20 0.98 

0.50 d=2, s=1, C=12 0.99 

0.75 d=2, s=1, C=20 0.99 

200 RBF 

0.25 C=3, 𝜎=0.6 0.98 

0.50 C=1, 𝜎=1.6 0.98 

0.75 C=20, 𝜎=1.1 0.99 

In Table 6, the highest accuracy values are obtained with polynomial and radial kernel. Although the 

optimal hyperparameter values are different in the radial kernel according to different correlation levels, it is 

seen that similar results are obtained for the appropriate hyperparameter values in the polynomial kernel. 

Furthermore, Haberman's Survival dataset from the University of California Irvine (UCI) repository [19] was 

used in the experiments. It was described in Table 6 with the number of classes, instances, and features. 

Table 6. Information about UCI dataset 

Dataset Number of Classes Number of Instances Number of Features 

Haberman’s Survival 2 306 3 

The analysis on the simulated datasets were also performed for the Haberman's Survival UCI dataset. The 

intervals specified in Table 2 were used to obtain the optimal hyperparameters. The optimal hyperparameter 

selection was performed according to kernel functions with Grid search and 10-fold CV methods with 30 

iterations. After determining the optimal hyperparameter values, the SVM classification process was 

performed. The results were given in Table 7. 

Table 7. SVM classification results of Haberman’s Survival dataset  

Kernel function Optimal hyperparameter values Classification accuracy % 

Linear C=5 0.7368 

Polynomial C=12, d=3, s=0.1  0.7337 

RBF C=8, 𝜎=0.1 0.7763 
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In Table 7, the highest SVM classification accuracy for the UCI dataset was achieved with the RBF kernel 

function with C=8 and  𝜎=0.1 values. In addition, the graphical representation of obtaining optimal 

hyperparameter values for 3 kernel functions was given in Figure 2. 

 
Fig 2: Optimal hyperparameters search for Haberman’s Survival dataset 

In Figure 2, the graphical representation of the values of the Cost parameter for the linear kernel according 

to SVM classification accuracy percentages was given on the left. It is seen that the highest accuracy values 

are obtained when the C parameter was greater than or equal to 5. In the middle, graphical representation of 

polynomial kernel parameters according to classification accuracy was given. It was observed that there is a 

relationship between C, scale and degree parameters and they have different effects on classification accuracy 

in different situations. On the right, a graphical representation of the values for the C and sigma parameters of 

the RBF kernel function was given. 

5. Conclusion 

The present study was focused on tuning the hyperparameters in SVM classification problems. Grid search 

and ten-fold CV methods were used to obtain optimal values of hyperparameters according to kernel functions 

with different sample sizes and correlation levels. Then, the classification accuracy values were examined by 

performing SVM classification. 

SVM is a powerful method developed for classification and regression problems. Although grid search 

and five- or ten-fold CV yields successful results in finding the optimal value for hyperparameters, it may still 

pose a risk to determine the intervals for these parameters by the users. Therefore, in future studies, developing 

new approaches in addition to existing methods on the automatic selection of hyperparameter and kernel 

function will save time in analyses and produce more reliable results. 
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