Review
BibTex RIS Cite

Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık

Year 2021, Volume: 2 Issue: 1, 17 - 39, 30.06.2021

Abstract

Biyosensörler, temel biyolojik süreçleri anlamamıza yardımcı olan değerli bilgileri kodlayan biyomoleküllerin ve biyo-işlevlerin dinamik değişikliklerini izlemek için tasarlanmış temel araçlardır. Günümüzde bu ihtiyacı karşılayan en yaygın analitik teknik olan doku histolojisi, uç nokta analizi, yüksek maliyet ve uzun hazırlık süresi ile sınırlıdır. Ayrıca, gerçek zamanlı izlemedeki zorluklar, nitel yorumlamada ortaya çıkan etik sorunlar nedeniyle dezavantajlıdır. Boyuta bağlı farklı fizikokimyasal özellikleri nedeniyle, nanometre ölçeklerine sahip malzemeler son zamanlarda biyolojik algılama uygulamaları için umut verici adaylar olarak ortaya çıktı ve önemli fizyolojik parametrelerin gerçek zamanlı değişikliklerine benzersiz bir bakış açısı sağladı. Sensör bileşenlerinin iki veya daha fazla sinyal aktarım mekanizmasına dayalı olarak çalıştığı çok modlu (multi mod) nano sensörlerin yarattığı sinerji daha ayrıntılı olarak elde edilir. Yogi Berra'nın "Sadece izleyerek çok şey gözlemleyebilirsiniz" ifadesi, biyosensörlerde biyoalgılama işlevinde sadece küçük bir ayarlama ile yerine getirilmektedir. Pek çok biyolojik süreç, yalnızca yüksek uzay-zamansal algılayıcı tepkileri takip edilerek gözlemlenir.
Makalemizde son yıllarda in vitro veya in vivo ölçümlere uygulanan nanobiyosensör cihazlarındaki önemli gelişmelere değinilmektedir. Biyolojik algılama uygulamaları için birden fazla mekanizma içeren nanobiyosensörlerin son gelişmelerine kısaca değinilecektir.

References

  • Kim, SJ., Choi, SJ., Jang, JS., Cho, HJ., Kim, ID., 2017. Innovative nanosensor for disease diagnosis. Acc. Chem. Res 50:1587-96.
  • Rong, G., Corrie, SR., Clark, HA., 2017. In vivo biosensing: progress and perspectives. ACS Sens. 2:327-38.
  • Borisov, SM., Wolfbeis, OS., 2008. Optical biosensors. Chem. Rev 108:423-61.
  • Xi, R., Zhang, SH., Zhang, L., Wang, C., Wang, LJ., Yan, JH., Pan, GB., 2019. Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite Sensing. Sensors, 19, 606.
  • Maduraiveeran, G., ve Jin, W., 2017. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications, Trends in Environmental Analytical Chemistry. 13:10-23.
  • Luo, M., Wang, H., Wang, Z., Cai, H., Lu, Z., Li, Y., Du, M., Huang, G., Wang, C., Chen, X., Porembka, M.R., Lea, J., Frankel, A.E., Fu, Y.X., Chen, Z.J., ve Gao, J., 2017. A STING-Activating Nanovaccine for Cancer Immunotherapy, Nature Nanotechnology, 12, 648-654.
  • Ahammad, AJS., Lee, JJ., Rahman, MA., 2009. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 9:2289-2319.
  • Mousavi, SM., Hashemi, SA., Zarei, M., Amani, AM., Babapoor, A., 2018. Nanosensors for Chemical and Biological and Medical Applications. Med Chem (Los Angeles) 8: 205-217.
  • Peng, HS., ve Chiu, DT., 2015. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev 44:4699-722.
  • Hu, Q., Wujcik, EK., Kelarakis, A., Cyriac, J., ve Gong, X., 2017. Carbon-Based Nanomaterials as Novel Nanosensors, Journal of Nanomaterials. 2017, 3643517.
  • Yu, XY., Liu, ZG., Huang, XY., 2014. Nanostructured metal oxides/hydroxides-based electrochemical sensor for monitoring environmental micropollutants, Trends Environ. Anal., 3, 28-35.
  • Gao, W., Emaminejad, S., Nyein, HYY., Challa, S., Chen, K., Peck, A., Fahad, HM., Ota, H., Shiraki, H., Kiriya, D., Lien, DH., Brooks, GA., Davis, RW., ve Javey, A., 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587): 509-514.
  • Mukhopadhyay, R., ve ark. 2005. Cantilever Sensor for Nanomechanical Detection of Specific Protein Conformations. Nano Letters, 5(12): 2385-2388.
  • Zhang, Y., ve ark. 2004. Calorimetric biosensors with integrated microfluidic channels. Biosensors and Bioelectronics, 19:1733-1743.
  • Sheehan, PE., Whitman, LJ., 2005. Detection limits for nanoscale biosensors. Nano Lett. 5:803-807.
  • Chen, RJ., Bangsaruntip, S., Drouvalakis, KA., ve ark. 2003. Noncovalent functionalization of carbon nanotubes for highly specifc electronic biosensors. Proc Natl Acad Sci U S A. 100:4984-4989.
  • Jain, KK., 2013. Synthetic biology and personalized medicine. Med Princ Pract. 22:209-219.
  • McPherson, MJ., Moller, SG., 2000. The Basics. New York: Cromwell Press, 1-45
  • Siqueira, JF., Roças, IN., 2004. Simultaneous detection of Dialister pneumosintes and Filifactor alocis in endodontic infections by 16Sr DNA-directed multiplex PCR. J Endod 30(12): 851-854.
  • Kwon, SJ., Bard, AJ., 2012. DNA Analysis by Application of Pt Nanoparticle Electrochemical Amplification with Single Label Response, Journal of the American Chemical Society 134(26):10777-10779
  • Corman, VM., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, DK., ve ark. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 25(3):2000045.
  • Corman, VM., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., ve ark. 2012 Detection of a novel human coronavirus by real-time reversetranscription polymerase chain reaction. Euro Surveill, 17(39):20285.
  • Johnson, BN., Mutharasan, R., 2014. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139: 1576-1588.
  • Patil, M., Mehta, DS., Guvva, S., 2008. Future Impact of Nanotechnology on Medicine and Dentistry. Journal of Indian Society of Periodontology. 12(2): 34-40.
  • Arlett, JL., Myers, EB., Roukes, ML., 2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6: 203-215.
  • Hibbert, DB., 1993. Introduction to Electrochemistry. London, UK: Macmillan Physical Science Series; 1-10.
  • Anam, M., Yori, O., Romana, S., Muhammad, A., Waheed, S., ve Sadia, Z., 2019. Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Adv. 9, 6793.
  • Rackauskas, S., ve Barolo, C., 2017. ZnO Nanowire Application in Chemoresistive Sensing: A Review Nanomaterials, 7(11), 381.
  • Adamson, A., Gast, A., 1997. Physical Chemistry of Surfaces. 6th ed. New York, NY, USA: John Wiley and Sons, Inc.
  • Bard, A., Parsons, R., Jordan, J., 1985. Standard Potentials in Aqueous Solution. Boca Raton, FL, USA: CRC Press.
  • Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., Baptista, PV., 2012. Noble Metal Nanoparticles for Biosensing Applications. Sensors, 12:1657-1687.
  • Agrawal, S., ve Prajapati, R., 2012. classified nanosensors into four classes, Int. J. Pharmaceut. Sci. Nanotechnol. 4, 1528.
  • Pohanka, M., 2018. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 11(3): 448.
  • Arslan, H., Ünal, K., Koyuncu, EA., Yildirim, E., ve Arslan, F., 2020. Development of a novel phenylalanine biosensor for diagnosis of phenylketonuria. IEEE Sensors Journal, 20(20), 12127-12133.
  • Zhang, B., ve Gao, PX., 2019. Metal Oxide Nanoarrays for Chemical Sensing: A Review of Fabrication Methods, Sensing Modes, and Their Inter-correlations, Front. Mater. 6, 1.
  • Zheng, G., Patolsky, F., Cui, Y., Wang, WU., Lieber, CM., 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 23:1294-1301.
  • Aykut, U., Temiz, H., 2006. Biyosensörler ve Gıdalarda Kullanımı. Gıda Teknolojileri Elektronik Dergisi, 3: 51-59.
  • Desai, T., Hansford, D., Ferrari, M., 1999. Characterization of microma- chined silicon membranes for immunoisolation and bioseparation applications. J Memb Sci. 159:221-231.
  • Chen, H., Weiss, J., Shadidi, F., 2006. Nanotechnology in nutraceuticals and functional foods. Food Technol, 60(3): 36.
  • Chang, CC., Chen, CP., Wu, TH., Yang, CH., Lin, CW., ve Chen, CY., 2019. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications, Nanomaterials, 9(6): 861.
  • Wolfrum, B., Katelhon, E., Yakushenko, A., Krause, KJ., Adly, N., Huske, M., ve Rinklin, P., 2016. Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Acc. Chem. Res., 49(9):2031-2041.
  • Burçin, B., Paylan, İ. C., Kızmaz, M. Z. ve Erkan, S., 2017. Biyosensörler ve tarım alanında kullanımı. Tarım Makinaları Bilimi Dergisi, 13(3):141-148.
  • Maduraiveeran, G., Todd, L., Adhikari, BR., Chen, A., 2015. Electrochemical Sensor Based on Carbon Nanotubes for the Simultaneous Detection of Phenolic Pollutants, Electroanalysis, 27(4): 902-909.
  • Wang, Y., Tong, MM., Zhang, D., Gao, Z., 2011. Improving the Performance of Catalytic Combustion Type Methane Gas Sensors Using Nanostructure Elements Doped with Rare Earth Cocatalysts, Sensors, 11, 19-31.
  • Guedon, P., Livache, T., Martin, F., ve ark. 2000. Characterization and opti- mization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem. 72:6003-6009.
  • Newman, JD., ve Turner, AP., 2005. Home blood glucose biosensors: a commercial perspective. Biosensors and bioelectronics, 20(12): 2435-2453.
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J., P., 2016. Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics 76: 213-233.
  • Gullberg, M., Gústafsdóttir, SM., Schallmeiner E., ve ark. 2004. Cytokine detec- tion by antibody-based proximity ligation. Proc Natl Acad Sci U S A. 101:8420-8424.
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J., P., 2016. Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics 76: 213-233.
  • Faria, M., Björnmalm, M., Thurecht, KJ., Kent, SJ., Parton, RG., ve ark. 2018. Reporting minimal information in Bio-nano experimental literature. Nat. Nanotechnol 13: 777-85.
  • Björnmalm, M., Faria, M., Caruso, F., 2016. Increasing the impact of materials in bio-nanoscience and beyond. J. Am. Chem. Soc. 138: 13449-56.
Year 2021, Volume: 2 Issue: 1, 17 - 39, 30.06.2021

Abstract

References

  • Kim, SJ., Choi, SJ., Jang, JS., Cho, HJ., Kim, ID., 2017. Innovative nanosensor for disease diagnosis. Acc. Chem. Res 50:1587-96.
  • Rong, G., Corrie, SR., Clark, HA., 2017. In vivo biosensing: progress and perspectives. ACS Sens. 2:327-38.
  • Borisov, SM., Wolfbeis, OS., 2008. Optical biosensors. Chem. Rev 108:423-61.
  • Xi, R., Zhang, SH., Zhang, L., Wang, C., Wang, LJ., Yan, JH., Pan, GB., 2019. Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite Sensing. Sensors, 19, 606.
  • Maduraiveeran, G., ve Jin, W., 2017. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications, Trends in Environmental Analytical Chemistry. 13:10-23.
  • Luo, M., Wang, H., Wang, Z., Cai, H., Lu, Z., Li, Y., Du, M., Huang, G., Wang, C., Chen, X., Porembka, M.R., Lea, J., Frankel, A.E., Fu, Y.X., Chen, Z.J., ve Gao, J., 2017. A STING-Activating Nanovaccine for Cancer Immunotherapy, Nature Nanotechnology, 12, 648-654.
  • Ahammad, AJS., Lee, JJ., Rahman, MA., 2009. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 9:2289-2319.
  • Mousavi, SM., Hashemi, SA., Zarei, M., Amani, AM., Babapoor, A., 2018. Nanosensors for Chemical and Biological and Medical Applications. Med Chem (Los Angeles) 8: 205-217.
  • Peng, HS., ve Chiu, DT., 2015. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev 44:4699-722.
  • Hu, Q., Wujcik, EK., Kelarakis, A., Cyriac, J., ve Gong, X., 2017. Carbon-Based Nanomaterials as Novel Nanosensors, Journal of Nanomaterials. 2017, 3643517.
  • Yu, XY., Liu, ZG., Huang, XY., 2014. Nanostructured metal oxides/hydroxides-based electrochemical sensor for monitoring environmental micropollutants, Trends Environ. Anal., 3, 28-35.
  • Gao, W., Emaminejad, S., Nyein, HYY., Challa, S., Chen, K., Peck, A., Fahad, HM., Ota, H., Shiraki, H., Kiriya, D., Lien, DH., Brooks, GA., Davis, RW., ve Javey, A., 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587): 509-514.
  • Mukhopadhyay, R., ve ark. 2005. Cantilever Sensor for Nanomechanical Detection of Specific Protein Conformations. Nano Letters, 5(12): 2385-2388.
  • Zhang, Y., ve ark. 2004. Calorimetric biosensors with integrated microfluidic channels. Biosensors and Bioelectronics, 19:1733-1743.
  • Sheehan, PE., Whitman, LJ., 2005. Detection limits for nanoscale biosensors. Nano Lett. 5:803-807.
  • Chen, RJ., Bangsaruntip, S., Drouvalakis, KA., ve ark. 2003. Noncovalent functionalization of carbon nanotubes for highly specifc electronic biosensors. Proc Natl Acad Sci U S A. 100:4984-4989.
  • Jain, KK., 2013. Synthetic biology and personalized medicine. Med Princ Pract. 22:209-219.
  • McPherson, MJ., Moller, SG., 2000. The Basics. New York: Cromwell Press, 1-45
  • Siqueira, JF., Roças, IN., 2004. Simultaneous detection of Dialister pneumosintes and Filifactor alocis in endodontic infections by 16Sr DNA-directed multiplex PCR. J Endod 30(12): 851-854.
  • Kwon, SJ., Bard, AJ., 2012. DNA Analysis by Application of Pt Nanoparticle Electrochemical Amplification with Single Label Response, Journal of the American Chemical Society 134(26):10777-10779
  • Corman, VM., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, DK., ve ark. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 25(3):2000045.
  • Corman, VM., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., ve ark. 2012 Detection of a novel human coronavirus by real-time reversetranscription polymerase chain reaction. Euro Surveill, 17(39):20285.
  • Johnson, BN., Mutharasan, R., 2014. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139: 1576-1588.
  • Patil, M., Mehta, DS., Guvva, S., 2008. Future Impact of Nanotechnology on Medicine and Dentistry. Journal of Indian Society of Periodontology. 12(2): 34-40.
  • Arlett, JL., Myers, EB., Roukes, ML., 2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6: 203-215.
  • Hibbert, DB., 1993. Introduction to Electrochemistry. London, UK: Macmillan Physical Science Series; 1-10.
  • Anam, M., Yori, O., Romana, S., Muhammad, A., Waheed, S., ve Sadia, Z., 2019. Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Adv. 9, 6793.
  • Rackauskas, S., ve Barolo, C., 2017. ZnO Nanowire Application in Chemoresistive Sensing: A Review Nanomaterials, 7(11), 381.
  • Adamson, A., Gast, A., 1997. Physical Chemistry of Surfaces. 6th ed. New York, NY, USA: John Wiley and Sons, Inc.
  • Bard, A., Parsons, R., Jordan, J., 1985. Standard Potentials in Aqueous Solution. Boca Raton, FL, USA: CRC Press.
  • Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., Baptista, PV., 2012. Noble Metal Nanoparticles for Biosensing Applications. Sensors, 12:1657-1687.
  • Agrawal, S., ve Prajapati, R., 2012. classified nanosensors into four classes, Int. J. Pharmaceut. Sci. Nanotechnol. 4, 1528.
  • Pohanka, M., 2018. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 11(3): 448.
  • Arslan, H., Ünal, K., Koyuncu, EA., Yildirim, E., ve Arslan, F., 2020. Development of a novel phenylalanine biosensor for diagnosis of phenylketonuria. IEEE Sensors Journal, 20(20), 12127-12133.
  • Zhang, B., ve Gao, PX., 2019. Metal Oxide Nanoarrays for Chemical Sensing: A Review of Fabrication Methods, Sensing Modes, and Their Inter-correlations, Front. Mater. 6, 1.
  • Zheng, G., Patolsky, F., Cui, Y., Wang, WU., Lieber, CM., 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 23:1294-1301.
  • Aykut, U., Temiz, H., 2006. Biyosensörler ve Gıdalarda Kullanımı. Gıda Teknolojileri Elektronik Dergisi, 3: 51-59.
  • Desai, T., Hansford, D., Ferrari, M., 1999. Characterization of microma- chined silicon membranes for immunoisolation and bioseparation applications. J Memb Sci. 159:221-231.
  • Chen, H., Weiss, J., Shadidi, F., 2006. Nanotechnology in nutraceuticals and functional foods. Food Technol, 60(3): 36.
  • Chang, CC., Chen, CP., Wu, TH., Yang, CH., Lin, CW., ve Chen, CY., 2019. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications, Nanomaterials, 9(6): 861.
  • Wolfrum, B., Katelhon, E., Yakushenko, A., Krause, KJ., Adly, N., Huske, M., ve Rinklin, P., 2016. Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Acc. Chem. Res., 49(9):2031-2041.
  • Burçin, B., Paylan, İ. C., Kızmaz, M. Z. ve Erkan, S., 2017. Biyosensörler ve tarım alanında kullanımı. Tarım Makinaları Bilimi Dergisi, 13(3):141-148.
  • Maduraiveeran, G., Todd, L., Adhikari, BR., Chen, A., 2015. Electrochemical Sensor Based on Carbon Nanotubes for the Simultaneous Detection of Phenolic Pollutants, Electroanalysis, 27(4): 902-909.
  • Wang, Y., Tong, MM., Zhang, D., Gao, Z., 2011. Improving the Performance of Catalytic Combustion Type Methane Gas Sensors Using Nanostructure Elements Doped with Rare Earth Cocatalysts, Sensors, 11, 19-31.
  • Guedon, P., Livache, T., Martin, F., ve ark. 2000. Characterization and opti- mization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem. 72:6003-6009.
  • Newman, JD., ve Turner, AP., 2005. Home blood glucose biosensors: a commercial perspective. Biosensors and bioelectronics, 20(12): 2435-2453.
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J., P., 2016. Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics 76: 213-233.
  • Gullberg, M., Gústafsdóttir, SM., Schallmeiner E., ve ark. 2004. Cytokine detec- tion by antibody-based proximity ligation. Proc Natl Acad Sci U S A. 101:8420-8424.
  • Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J., P., 2016. Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics 76: 213-233.
  • Faria, M., Björnmalm, M., Thurecht, KJ., Kent, SJ., Parton, RG., ve ark. 2018. Reporting minimal information in Bio-nano experimental literature. Nat. Nanotechnol 13: 777-85.
  • Björnmalm, M., Faria, M., Caruso, F., 2016. Increasing the impact of materials in bio-nanoscience and beyond. J. Am. Chem. Soc. 138: 13449-56.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Derleme Makaleler
Authors

Zülfü Tüylek 0000-0002-9086-1327

Publication Date June 30, 2021
Submission Date February 26, 2021
Acceptance Date June 30, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Tüylek, Z. (2021). Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık. Uluslararası Biyosistem Mühendisliği Dergisi, 2(1), 17-39.
AMA Tüylek Z. Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık. UBSMD. June 2021;2(1):17-39.
Chicago Tüylek, Zülfü. “Biyolojik Sistemlerde Gelecekteki Nano / Biyosensör Ürünlerine Hazırlık”. Uluslararası Biyosistem Mühendisliği Dergisi 2, no. 1 (June 2021): 17-39.
EndNote Tüylek Z (June 1, 2021) Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık. Uluslararası Biyosistem Mühendisliği Dergisi 2 1 17–39.
IEEE Z. Tüylek, “Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık”, UBSMD, vol. 2, no. 1, pp. 17–39, 2021.
ISNAD Tüylek, Zülfü. “Biyolojik Sistemlerde Gelecekteki Nano / Biyosensör Ürünlerine Hazırlık”. Uluslararası Biyosistem Mühendisliği Dergisi 2/1 (June 2021), 17-39.
JAMA Tüylek Z. Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık. UBSMD. 2021;2:17–39.
MLA Tüylek, Zülfü. “Biyolojik Sistemlerde Gelecekteki Nano / Biyosensör Ürünlerine Hazırlık”. Uluslararası Biyosistem Mühendisliği Dergisi, vol. 2, no. 1, 2021, pp. 17-39.
Vancouver Tüylek Z. Biyolojik Sistemlerde Gelecekteki Nano / biyosensör Ürünlerine Hazırlık. UBSMD. 2021;2(1):17-39.