Research Article
BibTex RIS Cite

Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi

Year 2024, Volume: 39 Issue: 4, 2091 - 2102, 20.05.2024
https://doi.org/10.17341/gazimmfd.1252226

Abstract

Askeri hücum teknolojisinin artan gücü nedeniyle, geleneksel zırh yöntemleri etkinliğini yitirmiştir. Bu nedenle hızla gelişen savunma uygulamaları için farklı mekanik özelliklere sahip yeni ekipmanların geliştirilmesi gerekliliği ortaya çıkmıştır. Bu çalışma kapsamında, ultra yüksek moleküler ağırlıklı polietilen (UHMWPE) destek tabakası ve alümina seramik yüzeyli kompozit zırh sisteminin 7.62×51mm zırh delici mermiye karşı balistik testleri yapılmış ve hasar yapıları incelenmiştir. Bu çalışma kapsamındaki balistik testler özel bir endüstriyel tesis laboratuvarında gerçekleştirilmiştir. Sonuç olarak verilen zırh kombinasyonunun koruyucu performansının yeterince yüksek olduğuna ve saha uygulaması için uygun bir seçim olduğuna karar verilmiştir. Yapılan deneyler sonucunda, meydana gelen kırılma konisi, hasarın boyutu ve yapısı, çatlak ilerlemesi, mermi hasarı, arka destek tabakasındaki çöküntü boyutu gibi birçok özellik açısından mükemmele yakın olduğu görülmüştür. Zırh sisteminin arka yüzeyindeki UHMWPE tabakasında oluşan çöküntü miktarının 18 ile 20 mm arasında değiştiği ölçülmüştür. Elde edilen bu değerler istenilen uluslararası personel koruma standartlarına uygun olduğundan oluşturulan zırh sistemi kompozisyonunun gerekli korumayı sağlayabilen tercih edilen bir kompozisyon olduğu anlaşılmaktadır. Genel olarak alümina seramik ön yüz, UHMWPE kompozit destek plakası ile oluşturulan ve epoksi reçine ile birleştirilen zırh sisteminin standartlar çerçevesinde istenilen özellikleri sağladığı görülmektedir.

References

  • 1. Jung W.K., Lee H.S., Jung J.W., Ahn S.H., Lee W.L., Kim H.J., Kwon J.W., Penetration mechanisms of ceramic composite armor made of Alumina-GFRP, International Journal of Precision Engineering and Manufacturing, 8 (4), 38-44, 2007.
  • 2. Mahdi S., Gama B.A., Yarlagadda S., Gillespir J.W., Effect of the manufacturing process on the interfacial properties and structural performance of multi-functional composite structures, Composites: Part A, 34, 635-647, 2003.
  • 3. Hamouda A.M.S., Hashmi M.S.J., Testing of composite materials at high rates of strain: advances and challenges, Journal of Materials Processing Technology, 77 (1-3), 327–336, 1998.
  • 4. National Research Council, Opportunities in protection materials science and technology for future army applications, The National Academies Press, Washington D.C., 12-13, 2011.
  • 5. American National Standards Institute, MIL-DTL-12560 Armor plate, steel, wrought, homogeneous (for use in combat-vehicles and for ammunition testing), Washington D.C., 2009.
  • 6. American National Standards Institute, MIL-DTL-46100 Armor plate, steel, wrought, high-hardness, Washington D.C., 2008.
  • 7. Sharma P., Chandel P., Bhardwaj V., Singh M., Mahajan P., Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles, Thin-Walled Structures, 126, 205-219, 2017. 8. Bandaru A.K., Ahmad S., Bhatnagar N., Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics, Composites Part A: Applied Science and Manufacturing, 97, 151–165, 2017.
  • 9. Walley S.M., Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Advances in Applied Ceramics, 109 (8), 446-466, 2010.
  • 10. Chen W.W., Rajendran A.M., Song B., Nie X., Dynamic fracture of ceramics in armor applications, Journal of the American Ceramic Society, 90 (4), 1005-1018, 2007.
  • 11. Lundberg P., Renström R., Lundberg B., Impact of metallic projectiles on ceramic targets: translation between interface defeat and penetration, International Journal of Impact Engineering, 24, 259-275, 2000.
  • 12. Kaufmann C., Cronina D., Worswicka M., Pageaub G., Bethc A., Influence of material properties on the ballistic performance of ceramics for personal body armour, Journal of Shock and Vibration, 10 (1), 51-58, 2003.
  • 13. Dateraksa K., Sujirote K., McCuiston R., Atong D., Ballistic performance of ceramic/s-glass composite armor, Journal of Metals, Materials and Minerals, 22 (2), 33-39. 2012.
  • 14. Chen L., Zheng K., Fang Q., Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates, Polymer Testing, 63, 54-64, 2017.
  • 15. Lässig T., Bagusat F., Pfändler S., Gulde M., Heunoske D., Osterholz J., Stein W., Nahme H., May M., Investigations on the spall and delamination behavior of UHMWPE composites, Composite Structures, 182, 590-597, 2017.
  • 16. Fallah A.S., Micallef K., Langdon G.S., Lee W.C., Curtis P.T., Louca L.A., Dynamic response of Dyneema® HB26 plates to localised blast loading, International Journal of Impact Engineering, 73, 91-100, 2014.
  • 17. Jiusti J., Kammer E.H., Neckel E., Lóh N.J., Trindade W., Silva A.O., Montedo O.R.K., De Noni Jr. A., Ballistic performance of Al2O3 mosaic armors with gap-filling materials, Ceramics International, 43 (2), 2697-2704, 2017.
  • 18. Toussaint G., Polyzois I., Steel spheres impact on alumina ceramic tiles: Experiments and finite element simulations, International Journal of Applied Ceramic Technology, 16, 2131–2152, 2019.
  • 19. Çelikbaş D., Acar E., Effect of sphere radius and bullet hitting location on the ballistic performance of alumina ceramic tile, Procedia Structural Integrity, 35, 269-278, 2022.
  • 20. Seiferta W., Strassburger E., Dolak M., Schaare S., Experimental study on the dependency of the ballistic performance of tiled ceramic/metal targets on inter tile gap width and projectile impact position, International Journal of Impact Engineering, 122, 50-59, 2018.
  • 21. Guo G., Alam S., Peel L.D., An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles, International Journal of Impact Engineering, 157, 104000, 2021.
  • 22. Khan M.K., Iqbal M.A., Bratov V., Morozov N.F., Gupta N.K., An investigation of the ballistic performance of independent ceramic target, Thin-Walled Structures, 154, 106784, 2020.
  • 23. Erçetin A., Özgün Ö., Aslantaş K., Powder metal Al2O3 reinforced Mg5Sn matrix composites: Production and characterization, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1003-1012, 2022.
  • 24. Arıkan R., Wear Behaviour of ZA-12 Alloy Composites Reinforced with Saffil (δ-Al2O3) Fibres, Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (3), 359-368, 2013.
  • 25. Gulcimen Cakan B., Ensarioglu C., Küçükakarsu V.M., Tekin İ.E., Çakır M.C., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1657-1668, 2021.
  • 26. Du S.Q., Chao Z.L., Wang Z.W., Luo T., Jiang L.T., Chen S.P., Zhao Q.Q., Zhang R.W., Han B.Z., Han H.M., Chen G.Q., Li W.L., Wu G.H., Study on the protective performance of high-performance multi-scale (SiCh-p+B4Cp)/5083Al ceramic array armor with excellent ballistic properties. Journal of Materials Research and Technology, 27, 6756-6768, 2023.
  • 27. Jiang Y., Qian K., Zhang Y., Xia Y., Xiong Z., Zhang Z., Yu K., Experimental characterisation and numerical simulation of ballistic penetration of columnar ceramic/fiber laminate composite armor. Journal of Materials & Design, 224, 111394, 2022.
  • 28. Pan G., Su H., Li X., Wang J., Coupled FEM-SPH simulation of the protective properties for metal/ceramic composite armor. International Journal of Lightweight Materials and Manufacture, 6 (4), 543-551, 2023.
  • 29. Wu Y., Wang X., Ma M., Yu Y., Lu W., Wang B., Gao G., Breaking behavior and stress distribution of T12A hard steel core penetrating ceramic/aluminum alloy lightweight composite armor, Journal of Materials Today Communications, 37, 107115, 2023.
  • 30. Si P., Liu Y., Yan J., Bai F., Shi Z., Huang F. Effect of polyurea layer on ballistic behavior of ceramic/metal armor, Journal of Structures, 48, 1856-1867, 2023.
  • 31. National Institute of Justice, Ballistic Resistance of Body Armor NIJ Standard-0101.06, U.S. Department of Justice, Washington D.C., 1-75, 2008.
  • 32. Nato Standardization Office, AEP-55 Procedures For Evaluating The Protection Level Of Logistic And Light Armoured Vehicles, STANAG Standart-4569, 1-25, 2005.
  • 33. Ramadhan A.A., Abu Talib A.R., Mohd Rafie A.S., Zahari R., High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels, Materials and Design, 43, 307-321, 2013.
Year 2024, Volume: 39 Issue: 4, 2091 - 2102, 20.05.2024
https://doi.org/10.17341/gazimmfd.1252226

Abstract

References

  • 1. Jung W.K., Lee H.S., Jung J.W., Ahn S.H., Lee W.L., Kim H.J., Kwon J.W., Penetration mechanisms of ceramic composite armor made of Alumina-GFRP, International Journal of Precision Engineering and Manufacturing, 8 (4), 38-44, 2007.
  • 2. Mahdi S., Gama B.A., Yarlagadda S., Gillespir J.W., Effect of the manufacturing process on the interfacial properties and structural performance of multi-functional composite structures, Composites: Part A, 34, 635-647, 2003.
  • 3. Hamouda A.M.S., Hashmi M.S.J., Testing of composite materials at high rates of strain: advances and challenges, Journal of Materials Processing Technology, 77 (1-3), 327–336, 1998.
  • 4. National Research Council, Opportunities in protection materials science and technology for future army applications, The National Academies Press, Washington D.C., 12-13, 2011.
  • 5. American National Standards Institute, MIL-DTL-12560 Armor plate, steel, wrought, homogeneous (for use in combat-vehicles and for ammunition testing), Washington D.C., 2009.
  • 6. American National Standards Institute, MIL-DTL-46100 Armor plate, steel, wrought, high-hardness, Washington D.C., 2008.
  • 7. Sharma P., Chandel P., Bhardwaj V., Singh M., Mahajan P., Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles, Thin-Walled Structures, 126, 205-219, 2017. 8. Bandaru A.K., Ahmad S., Bhatnagar N., Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics, Composites Part A: Applied Science and Manufacturing, 97, 151–165, 2017.
  • 9. Walley S.M., Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Advances in Applied Ceramics, 109 (8), 446-466, 2010.
  • 10. Chen W.W., Rajendran A.M., Song B., Nie X., Dynamic fracture of ceramics in armor applications, Journal of the American Ceramic Society, 90 (4), 1005-1018, 2007.
  • 11. Lundberg P., Renström R., Lundberg B., Impact of metallic projectiles on ceramic targets: translation between interface defeat and penetration, International Journal of Impact Engineering, 24, 259-275, 2000.
  • 12. Kaufmann C., Cronina D., Worswicka M., Pageaub G., Bethc A., Influence of material properties on the ballistic performance of ceramics for personal body armour, Journal of Shock and Vibration, 10 (1), 51-58, 2003.
  • 13. Dateraksa K., Sujirote K., McCuiston R., Atong D., Ballistic performance of ceramic/s-glass composite armor, Journal of Metals, Materials and Minerals, 22 (2), 33-39. 2012.
  • 14. Chen L., Zheng K., Fang Q., Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates, Polymer Testing, 63, 54-64, 2017.
  • 15. Lässig T., Bagusat F., Pfändler S., Gulde M., Heunoske D., Osterholz J., Stein W., Nahme H., May M., Investigations on the spall and delamination behavior of UHMWPE composites, Composite Structures, 182, 590-597, 2017.
  • 16. Fallah A.S., Micallef K., Langdon G.S., Lee W.C., Curtis P.T., Louca L.A., Dynamic response of Dyneema® HB26 plates to localised blast loading, International Journal of Impact Engineering, 73, 91-100, 2014.
  • 17. Jiusti J., Kammer E.H., Neckel E., Lóh N.J., Trindade W., Silva A.O., Montedo O.R.K., De Noni Jr. A., Ballistic performance of Al2O3 mosaic armors with gap-filling materials, Ceramics International, 43 (2), 2697-2704, 2017.
  • 18. Toussaint G., Polyzois I., Steel spheres impact on alumina ceramic tiles: Experiments and finite element simulations, International Journal of Applied Ceramic Technology, 16, 2131–2152, 2019.
  • 19. Çelikbaş D., Acar E., Effect of sphere radius and bullet hitting location on the ballistic performance of alumina ceramic tile, Procedia Structural Integrity, 35, 269-278, 2022.
  • 20. Seiferta W., Strassburger E., Dolak M., Schaare S., Experimental study on the dependency of the ballistic performance of tiled ceramic/metal targets on inter tile gap width and projectile impact position, International Journal of Impact Engineering, 122, 50-59, 2018.
  • 21. Guo G., Alam S., Peel L.D., An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles, International Journal of Impact Engineering, 157, 104000, 2021.
  • 22. Khan M.K., Iqbal M.A., Bratov V., Morozov N.F., Gupta N.K., An investigation of the ballistic performance of independent ceramic target, Thin-Walled Structures, 154, 106784, 2020.
  • 23. Erçetin A., Özgün Ö., Aslantaş K., Powder metal Al2O3 reinforced Mg5Sn matrix composites: Production and characterization, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1003-1012, 2022.
  • 24. Arıkan R., Wear Behaviour of ZA-12 Alloy Composites Reinforced with Saffil (δ-Al2O3) Fibres, Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (3), 359-368, 2013.
  • 25. Gulcimen Cakan B., Ensarioglu C., Küçükakarsu V.M., Tekin İ.E., Çakır M.C., Experimental and numerical investigation of in-plane and out-of-plane impact behaviour of auxetic honeycomb boxes produced by material extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1657-1668, 2021.
  • 26. Du S.Q., Chao Z.L., Wang Z.W., Luo T., Jiang L.T., Chen S.P., Zhao Q.Q., Zhang R.W., Han B.Z., Han H.M., Chen G.Q., Li W.L., Wu G.H., Study on the protective performance of high-performance multi-scale (SiCh-p+B4Cp)/5083Al ceramic array armor with excellent ballistic properties. Journal of Materials Research and Technology, 27, 6756-6768, 2023.
  • 27. Jiang Y., Qian K., Zhang Y., Xia Y., Xiong Z., Zhang Z., Yu K., Experimental characterisation and numerical simulation of ballistic penetration of columnar ceramic/fiber laminate composite armor. Journal of Materials & Design, 224, 111394, 2022.
  • 28. Pan G., Su H., Li X., Wang J., Coupled FEM-SPH simulation of the protective properties for metal/ceramic composite armor. International Journal of Lightweight Materials and Manufacture, 6 (4), 543-551, 2023.
  • 29. Wu Y., Wang X., Ma M., Yu Y., Lu W., Wang B., Gao G., Breaking behavior and stress distribution of T12A hard steel core penetrating ceramic/aluminum alloy lightweight composite armor, Journal of Materials Today Communications, 37, 107115, 2023.
  • 30. Si P., Liu Y., Yan J., Bai F., Shi Z., Huang F. Effect of polyurea layer on ballistic behavior of ceramic/metal armor, Journal of Structures, 48, 1856-1867, 2023.
  • 31. National Institute of Justice, Ballistic Resistance of Body Armor NIJ Standard-0101.06, U.S. Department of Justice, Washington D.C., 1-75, 2008.
  • 32. Nato Standardization Office, AEP-55 Procedures For Evaluating The Protection Level Of Logistic And Light Armoured Vehicles, STANAG Standart-4569, 1-25, 2005.
  • 33. Ramadhan A.A., Abu Talib A.R., Mohd Rafie A.S., Zahari R., High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels, Materials and Design, 43, 307-321, 2013.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Akif Akdoğan 0000-0002-4127-1478

Selim Türkbas 0000-0002-9262-8844

Early Pub Date May 17, 2024
Publication Date May 20, 2024
Submission Date February 17, 2023
Acceptance Date January 12, 2024
Published in Issue Year 2024 Volume: 39 Issue: 4

Cite

APA Akdoğan, M. A., & Türkbas, S. (2024). Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2091-2102. https://doi.org/10.17341/gazimmfd.1252226
AMA Akdoğan MA, Türkbas S. Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi. GUMMFD. May 2024;39(4):2091-2102. doi:10.17341/gazimmfd.1252226
Chicago Akdoğan, Mehmet Akif, and Selim Türkbas. “Alümina önyüzlü Polietilen Destekli Kompozit zırhın Balistik davranışlarının Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 4 (May 2024): 2091-2102. https://doi.org/10.17341/gazimmfd.1252226.
EndNote Akdoğan MA, Türkbas S (May 1, 2024) Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2091–2102.
IEEE M. A. Akdoğan and S. Türkbas, “Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi”, GUMMFD, vol. 39, no. 4, pp. 2091–2102, 2024, doi: 10.17341/gazimmfd.1252226.
ISNAD Akdoğan, Mehmet Akif - Türkbas, Selim. “Alümina önyüzlü Polietilen Destekli Kompozit zırhın Balistik davranışlarının Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (May 2024), 2091-2102. https://doi.org/10.17341/gazimmfd.1252226.
JAMA Akdoğan MA, Türkbas S. Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi. GUMMFD. 2024;39:2091–2102.
MLA Akdoğan, Mehmet Akif and Selim Türkbas. “Alümina önyüzlü Polietilen Destekli Kompozit zırhın Balistik davranışlarının Deneysel Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 4, 2024, pp. 2091-02, doi:10.17341/gazimmfd.1252226.
Vancouver Akdoğan MA, Türkbas S. Alümina önyüzlü polietilen destekli kompozit zırhın balistik davranışlarının deneysel incelenmesi. GUMMFD. 2024;39(4):2091-102.