Research Article
BibTex RIS Cite

Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü

Year 2024, Volume: 39 Issue: 4, 2239 - 2252, 20.05.2024
https://doi.org/10.17341/gazimmfd.1267017

Abstract

Jeopolimer üretiminde uygulanan geleneksel kür yöntemlerinde, yeterli özelik kazanımı için uzun bir kür süresi gerekmektedir. Özeliklerin daha kısa sürede geliştirilmesi amacıyla farklı kür yöntemleri arayışı sürmektedir. Bu araştırmanın amacı, doğal puzolan-esaslı jeopolimer malzeme özeliklerinin mikrodalga kürüyle daha kısa sürede ve daha az enerji harcanarak geliştirilebilmesi olanaklarını değerlendirmektir. Alüminosilikat kaynağı olarak Türkiye’nin Datça Yarımadası’nda bulunan volkanik tüf, dolgu maddesi olarak standart kum ve alkali aktivatör olarak potasyum hidroksit ve sodyum silikat kullanılmıştır. Numuneler dört farklı yöntemle kürlenmiştir: (i) Geleneksel ısı kürü; (ii) Mikrodalga kürü; (iii) Isı+mikrodalga kürü; (iv) Mikrodalga+ısı kürü. Araştırma sonucunda, doğal puzolan-esaslı jeopolimer özeliklerinin mikrodalga kürüyle, geleneksel ısı kürüne nazaran daha kısa sürede ve daha az enerji harcanarak geliştirilebilmesinin mümkün olduğu belirlenmiştir. Isı+mikrodalga veya mikrodalga+ısı kürü (kombine kür yöntemleri), yalnızca ısı veya mikrodalga kürüne nazaran daha yüksek fiziksel ve mekanik özeliklerin elde edilmesini sağlamıştır. En yüksek reaksiyon derecesi, fiziksel ve mekanik özellikler 90 °C’de 24 saat ısı+15 dakika mikrodalga kürüyle elde edilmiştir. Reaksiyonların gelişiminde ilk 12 saatteki etkinliğin daha yüksek olduğu ve 24 saat ısı kürü yerine 12 saat kür süresinin yeterli olduğu belirlenmiştir. Kombine kür yöntemlerinin birlikte uygulanması, diğer yöntemlere nazaran nispeten daha yüksek enerji tüketimine yol açmasına rağmen, malzemenin mekanik özeliklerini yaklaşık iki kat geliştirmesi bakımından önemlidir.

References

  • 1. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., An overview of the chemistry of alkali-activated cement-based binders, In F. Pacheco- Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.), Handbook of Alkali-Activated Cements, Mortars and Concretes, 2, 19-47, 2015.
  • 2. RILEM TC 224-AAM, State-of-the-Art Report, Alkali Activated Materials, 2014.
  • 3. Zhang, Z., Provis, J.L., Reid, A., Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Construction and Building Materials, 56, 113-127, 2014.
  • 4. Athira, V.S., Bahurudeen, A., Saljas, M., Jayachandran, K., Influence of different curing methods on mechanical and durability properties of alkali activated binders, Construction and Building Materials, 299, 123963, 2021.
  • 5. Jiang, D., Shi, C., Zhang, Z., Recent progress in understanding setting and hardening of alkali-activated slag (AAS) materials, Cement and Concrete Composites, 134, 104795, 2022.
  • 6. Nath, P., Sarker, P.K., Use of OPC to ımprove setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature, Cement and Concrete Composites, 55, 205–214, 2015.
  • 7. Wang, K., Shah, S.P., Mishulovich, A., Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders, Cement and Concrete Research, 34, 2, 299–309, 2004.
  • 8. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., Rangan, B.V., On the development of fly ash-based geopolymer concrete, ACI Materials Journal, 101, 467–472, 2004.
  • 9. Heah, C.Y., Kamarudin, H., Mustafa Al Bakri, A.M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C.M., Liew, Y.M., Effect of curing profile on kaolin-based geopolymers, Physics Procedia, 22, 305–311, 2011.
  • 10. Muñiz-Villarreal, M.S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Ramón Gasca-Tirado, J., Reyes-Araiza, J.L., Rubio-Ávalos, J.C., Pérez-Bueno, J.J., Apatiga, L.M., Zaldivar-Cadena, A., Amigó-Borrás, V., The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer, Materials Letters, 65, 6, 995–998, 2011.
  • 11. Ferone, C., Colangelo, F., Cioffi, R., Montagnaro, F., Santoro, L., Mechanical performances of weathered coal fly ash based geopolymer bricks, Procedia Engineering, 21, 745–752, 2011.
  • 12. Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites, 29, 3, 224–229, 2007.
  • 13. Yurt, U., High performance cementless composites from alkali activated GGBFS, Construction and Building Materials, 264, 120222, 2020.
  • 14. Noushini, A., Castel, A., The effect of heat-curing on transport properties of low- calcium fly ash-based geopolymer concrete, Construction and Building Materials, 112, 464–477, 2016.
  • 15. Öztürk, Z.B., Atabey, İ.İ., Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste, Ceramics International, 48, (9), 12932-12944, 2022.
  • 16. Çelikten, S., Sarıdemir, M., Akçaözoğlu, K., Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars, Journal of Building Engineering, 32, 101717, 2020.
  • 17. Çelikten, S., Erdoğan, G., Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures, Ceramics International, 48, 19, Part A, 27870-27877, 2022. 18. Tuyan, M., Andiç-Çakir, Ö., Ramyar, K., Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer, Composites Part B: Engineering, 135, 242–252, 2018.
  • 19. González-García, D.M., Téllez-Jurado, L., Jiménez-Álvarez, F.J., Zarazua-Villalobos, L., Balmori-Ramírez, H., Evolution of a natural pozzolan-based geopolymer alkalized in the presence of sodium or potassium silicate/hydroxide solution, Construction and Building Materials, 321, 126305, 2022.
  • 20. Rovnaník, P., Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Construction and Building Materials, 24, 7, 1176–1183, 2010.
  • 21. Ma, Y., Hu, J., Ye, G., The pore structure and permeability of alkali activated fly ash, Fuel, 104 771–780, 2013. 22. Görhan, G., Kürklü, G., The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures, Composites Part B: Engineering, 58, 371–377, 2014.
  • 23. Çelikten, S., Atabey, İ.İ., Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10, 1, 328-332, 2021.
  • 24. Mahmut, O., Emiroğlu, M., Elazığ ferrokrom cürufunun alkali aktive edilmiş harç üretiminde kullanım potansiyelinin araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28, 1, 23-34, 2016.
  • 25. Li, Q., Chen, S., Zhang, Y., Hu, Y., Wang, Q., Zhou, Q., Yan, Y., Liu, Y., Yan, D., Effect of curing temperature on high-strength metakaolin-based geopolymer composite (HMGC) with quartz powder and steel fibers, Materials, 15, 3958, 2022.
  • 26. Zuhua, Z., Xiao, Y., Huajun, Z., Yue, C., Role of water in the synthesis of calcined kaolin-based geopolymer, Applied Clay Science, 43, 2, 218–223, 2009.
  • 27. Sun, Y., Zhang, P., Hu, J., Liu, B., Yang, J., Liang, S., Xiao, K., Hou, H., A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges, Construction and Building Materials, 294, 123491, 2021.
  • 28. Graytee, A., Sanjayan, J.G., Nazari, A., Development of a high strength fly ash-based geopolymer in short time by using microwave curing, Ceramics International, 44, (7), 8216-8222, 2018.
  • 29. El-Feky, M.S., Kohail, M., El-Tair, A.M., Serag, M.I., Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes, Construction and Building Materials, 233, 117268, 2020.
  • 30. Somaratna, J., Ravikumar, D., Neithalath, N., Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research, 40, (12), 1688-1696, 2010.
  • 31. Chindaprasirt, P., Rattanasak, U., Taebuanhuad, S., Role of microwave radiation in curing the fly ash geopolymer, Advanced Powder Technology, 24, (3), 703-707, 2013.
  • 32. Hong, S., Kim, H., Robust synthesis of coal bottom ash-based geopolymers using additional microwave heating and curing for high compressive strength properties, Korean Journal of Chemical Engineering, 36, (7), 1164-1171, 2019.
  • 33. Bai, C., Deng, Y., Zhou, Q., Deng, G., Yang, T., Yang, Y., Effect of different curing methods on the preparation of carbonized high-titanium slag based geopolymers, Construction and Building Materials, 342, Part A, 128023, 2022.
  • 34. Robayo-Salazar, R.A., Gutierrez, R.M., Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: a review, Construction and Building Materials, 189, 109–118, 2018.
  • 35. Gultekin, A., Ramyar, K., Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing, Construction and Building Materials, 365, 130059, 2023.
  • 36. Ercan, T., Günay, E., Bas, H., Can, B., Datça Yarımadasındaki kuvaterner yaslı volkanik kayaçların petrolojisi ve kokensel yorumu, Bulletin of the Mineral Research and Exploration, 97/98 21–23, 1984.
  • 37. TS EN 196–6, Çimento Deney Yöntemleri - Bölüm 6: İncelik Tayini, Türk Standardları Enstitüsü, Ankara, 2010.
  • 38. ASTM D 854-10, Standard Test Method for Gravity of Soils by Water Pycnometer, Annual Book of ASTM Standards, 2010.
  • 39. TS EN 196-1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini, Türk Standardları Enstitüsü, Ankara, 2009. 40. ASTM C1437-20, Standard test method for flow of hydraulic cement mortar. West Conshohocken, United States, 2020.
  • 41. TS EN 1015-10, Kâgir Harcı - Deney Metotları - Bölüm 10: Sertleşmiş Harcın Boşluklu Kuru Birim Hacim Kütlesinin Tayini, Türk Standardları Enstitüsü, Ankara, 2001.
  • 42. TS EN 14579, Doğal Taşlar - Deney Metotları - Ses Hızı İlerlemesinin Tayini, Türk Standardları Enstitüsü, Ankara, 2006.
  • 43. Ohsawa, S., Asaga, K., Goto, S., Daimon, M., Quantitative determination of fly ash in the hydrated fly ash-CaSO42H2O-Ca(OH)2 system, Cement and Concrete Research, 15, (2), 357–366, 1985.
  • 44. Criado, M., Fernandez-Jimenez, A., Palomo, A., Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description, Fuel, 89, (11), 3185–3192, 2010.
  • 45. Fernandez-Jimenez, A., De La Torre, A.G., Palomo, A., Lopez-Olmo, G., Alonso, M.M., Aranda, M.A.G., Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction, Fuel, 85, (14–15), 1960-1969, 2006.
  • 46. Samantasinghar, S., Singh, S., Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder, Construction and Building Materials, 235, 117481, 2020.
  • 47. Tanaçan, L., Kurugöl, S., Ersoy, H.S., Investigation of ultrasonic pulse velocity-strength relationship of lime-pozzolan mortars, Fourth International Ecomaterials Symposium, Bayamo, Cuba, 2009.
  • 48. Gubb, T.A., Baranova, I., Allan, S.M., Fall, M.L., Shulman, H.S., Kriven, W.M., Microwave enhanced drying and firing of geopolymers, Developments in Strategic Materials and Computational Design II, Wiley, New Jersey, 35, 2011.
  • 49. Hong, S., Kim, H., Effect of microwave energy on rapid compressive strength development in coal bottom ash based geopolymers, Poster session presented at the Fall Symposium of The Korean Inst. Chem. Eng., Korea, 2018.
  • 50. Davidovits, J., Geopolymer chemistry and applications, 4th Ed., Geopolymer Institute, France, 2015.
  • 51. Abdulkareem, O.A., Mustafa Al Bakri, A.M., Kamarudin, H., Khairul Nizar, I., Saif, A.A., Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete, Construction and Building Materials, 50, 377-387, 2014.
  • 52. Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Construction and Building Materials, 55, 38-45, 2014.
  • 53. Giasuddin, H.M., Sanjayan, J.G., Ranjith, P.G., Strength of geopolymer cured in saline water in ambient conditions, Fuel, 107, 34-39, 2013.
  • 54. Galiano, Y.L., Pereira, C.F., Izquierdo, M., Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength, Materiales de Construccion, 66, 1-14, 2016.
  • 55. Peng, L. Appels, L., Su, H., Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge, Journal of Environmental Management, 213, 271-278, 2018.
  • 56. Razzaq, T., Kappe, C.O., On the energy efficiency of microwave-assisted organic reactions, ChemSusChem, 1, 123-132, 2008.
  • 57. Yurt, Ü., Emiroğlu, M., Zeolit ı̇kameli geopolimer betonlarda kür şartlarının etkileri, Academic Platform Journal of Engineering and Science 8-2, 396-402, 2020.
  • 58. Wazien, A.Z.W., Al Bakri Abdullah, M.M., Razak, R.A., Rozainy, M.A.Z., Tahir, M.F.M., Strength and density of geopolymer mortar cured at ambient temperature for use as repair material, IOP Conference Series: Materials Science and Engineering, 133, 012042, 2016.
Year 2024, Volume: 39 Issue: 4, 2239 - 2252, 20.05.2024
https://doi.org/10.17341/gazimmfd.1267017

Abstract

References

  • 1. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., An overview of the chemistry of alkali-activated cement-based binders, In F. Pacheco- Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.), Handbook of Alkali-Activated Cements, Mortars and Concretes, 2, 19-47, 2015.
  • 2. RILEM TC 224-AAM, State-of-the-Art Report, Alkali Activated Materials, 2014.
  • 3. Zhang, Z., Provis, J.L., Reid, A., Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Construction and Building Materials, 56, 113-127, 2014.
  • 4. Athira, V.S., Bahurudeen, A., Saljas, M., Jayachandran, K., Influence of different curing methods on mechanical and durability properties of alkali activated binders, Construction and Building Materials, 299, 123963, 2021.
  • 5. Jiang, D., Shi, C., Zhang, Z., Recent progress in understanding setting and hardening of alkali-activated slag (AAS) materials, Cement and Concrete Composites, 134, 104795, 2022.
  • 6. Nath, P., Sarker, P.K., Use of OPC to ımprove setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature, Cement and Concrete Composites, 55, 205–214, 2015.
  • 7. Wang, K., Shah, S.P., Mishulovich, A., Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders, Cement and Concrete Research, 34, 2, 299–309, 2004.
  • 8. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., Rangan, B.V., On the development of fly ash-based geopolymer concrete, ACI Materials Journal, 101, 467–472, 2004.
  • 9. Heah, C.Y., Kamarudin, H., Mustafa Al Bakri, A.M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C.M., Liew, Y.M., Effect of curing profile on kaolin-based geopolymers, Physics Procedia, 22, 305–311, 2011.
  • 10. Muñiz-Villarreal, M.S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Ramón Gasca-Tirado, J., Reyes-Araiza, J.L., Rubio-Ávalos, J.C., Pérez-Bueno, J.J., Apatiga, L.M., Zaldivar-Cadena, A., Amigó-Borrás, V., The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer, Materials Letters, 65, 6, 995–998, 2011.
  • 11. Ferone, C., Colangelo, F., Cioffi, R., Montagnaro, F., Santoro, L., Mechanical performances of weathered coal fly ash based geopolymer bricks, Procedia Engineering, 21, 745–752, 2011.
  • 12. Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites, 29, 3, 224–229, 2007.
  • 13. Yurt, U., High performance cementless composites from alkali activated GGBFS, Construction and Building Materials, 264, 120222, 2020.
  • 14. Noushini, A., Castel, A., The effect of heat-curing on transport properties of low- calcium fly ash-based geopolymer concrete, Construction and Building Materials, 112, 464–477, 2016.
  • 15. Öztürk, Z.B., Atabey, İ.İ., Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste, Ceramics International, 48, (9), 12932-12944, 2022.
  • 16. Çelikten, S., Sarıdemir, M., Akçaözoğlu, K., Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars, Journal of Building Engineering, 32, 101717, 2020.
  • 17. Çelikten, S., Erdoğan, G., Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures, Ceramics International, 48, 19, Part A, 27870-27877, 2022. 18. Tuyan, M., Andiç-Çakir, Ö., Ramyar, K., Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer, Composites Part B: Engineering, 135, 242–252, 2018.
  • 19. González-García, D.M., Téllez-Jurado, L., Jiménez-Álvarez, F.J., Zarazua-Villalobos, L., Balmori-Ramírez, H., Evolution of a natural pozzolan-based geopolymer alkalized in the presence of sodium or potassium silicate/hydroxide solution, Construction and Building Materials, 321, 126305, 2022.
  • 20. Rovnaník, P., Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Construction and Building Materials, 24, 7, 1176–1183, 2010.
  • 21. Ma, Y., Hu, J., Ye, G., The pore structure and permeability of alkali activated fly ash, Fuel, 104 771–780, 2013. 22. Görhan, G., Kürklü, G., The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures, Composites Part B: Engineering, 58, 371–377, 2014.
  • 23. Çelikten, S., Atabey, İ.İ., Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10, 1, 328-332, 2021.
  • 24. Mahmut, O., Emiroğlu, M., Elazığ ferrokrom cürufunun alkali aktive edilmiş harç üretiminde kullanım potansiyelinin araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28, 1, 23-34, 2016.
  • 25. Li, Q., Chen, S., Zhang, Y., Hu, Y., Wang, Q., Zhou, Q., Yan, Y., Liu, Y., Yan, D., Effect of curing temperature on high-strength metakaolin-based geopolymer composite (HMGC) with quartz powder and steel fibers, Materials, 15, 3958, 2022.
  • 26. Zuhua, Z., Xiao, Y., Huajun, Z., Yue, C., Role of water in the synthesis of calcined kaolin-based geopolymer, Applied Clay Science, 43, 2, 218–223, 2009.
  • 27. Sun, Y., Zhang, P., Hu, J., Liu, B., Yang, J., Liang, S., Xiao, K., Hou, H., A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges, Construction and Building Materials, 294, 123491, 2021.
  • 28. Graytee, A., Sanjayan, J.G., Nazari, A., Development of a high strength fly ash-based geopolymer in short time by using microwave curing, Ceramics International, 44, (7), 8216-8222, 2018.
  • 29. El-Feky, M.S., Kohail, M., El-Tair, A.M., Serag, M.I., Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes, Construction and Building Materials, 233, 117268, 2020.
  • 30. Somaratna, J., Ravikumar, D., Neithalath, N., Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research, 40, (12), 1688-1696, 2010.
  • 31. Chindaprasirt, P., Rattanasak, U., Taebuanhuad, S., Role of microwave radiation in curing the fly ash geopolymer, Advanced Powder Technology, 24, (3), 703-707, 2013.
  • 32. Hong, S., Kim, H., Robust synthesis of coal bottom ash-based geopolymers using additional microwave heating and curing for high compressive strength properties, Korean Journal of Chemical Engineering, 36, (7), 1164-1171, 2019.
  • 33. Bai, C., Deng, Y., Zhou, Q., Deng, G., Yang, T., Yang, Y., Effect of different curing methods on the preparation of carbonized high-titanium slag based geopolymers, Construction and Building Materials, 342, Part A, 128023, 2022.
  • 34. Robayo-Salazar, R.A., Gutierrez, R.M., Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: a review, Construction and Building Materials, 189, 109–118, 2018.
  • 35. Gultekin, A., Ramyar, K., Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing, Construction and Building Materials, 365, 130059, 2023.
  • 36. Ercan, T., Günay, E., Bas, H., Can, B., Datça Yarımadasındaki kuvaterner yaslı volkanik kayaçların petrolojisi ve kokensel yorumu, Bulletin of the Mineral Research and Exploration, 97/98 21–23, 1984.
  • 37. TS EN 196–6, Çimento Deney Yöntemleri - Bölüm 6: İncelik Tayini, Türk Standardları Enstitüsü, Ankara, 2010.
  • 38. ASTM D 854-10, Standard Test Method for Gravity of Soils by Water Pycnometer, Annual Book of ASTM Standards, 2010.
  • 39. TS EN 196-1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini, Türk Standardları Enstitüsü, Ankara, 2009. 40. ASTM C1437-20, Standard test method for flow of hydraulic cement mortar. West Conshohocken, United States, 2020.
  • 41. TS EN 1015-10, Kâgir Harcı - Deney Metotları - Bölüm 10: Sertleşmiş Harcın Boşluklu Kuru Birim Hacim Kütlesinin Tayini, Türk Standardları Enstitüsü, Ankara, 2001.
  • 42. TS EN 14579, Doğal Taşlar - Deney Metotları - Ses Hızı İlerlemesinin Tayini, Türk Standardları Enstitüsü, Ankara, 2006.
  • 43. Ohsawa, S., Asaga, K., Goto, S., Daimon, M., Quantitative determination of fly ash in the hydrated fly ash-CaSO42H2O-Ca(OH)2 system, Cement and Concrete Research, 15, (2), 357–366, 1985.
  • 44. Criado, M., Fernandez-Jimenez, A., Palomo, A., Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description, Fuel, 89, (11), 3185–3192, 2010.
  • 45. Fernandez-Jimenez, A., De La Torre, A.G., Palomo, A., Lopez-Olmo, G., Alonso, M.M., Aranda, M.A.G., Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction, Fuel, 85, (14–15), 1960-1969, 2006.
  • 46. Samantasinghar, S., Singh, S., Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder, Construction and Building Materials, 235, 117481, 2020.
  • 47. Tanaçan, L., Kurugöl, S., Ersoy, H.S., Investigation of ultrasonic pulse velocity-strength relationship of lime-pozzolan mortars, Fourth International Ecomaterials Symposium, Bayamo, Cuba, 2009.
  • 48. Gubb, T.A., Baranova, I., Allan, S.M., Fall, M.L., Shulman, H.S., Kriven, W.M., Microwave enhanced drying and firing of geopolymers, Developments in Strategic Materials and Computational Design II, Wiley, New Jersey, 35, 2011.
  • 49. Hong, S., Kim, H., Effect of microwave energy on rapid compressive strength development in coal bottom ash based geopolymers, Poster session presented at the Fall Symposium of The Korean Inst. Chem. Eng., Korea, 2018.
  • 50. Davidovits, J., Geopolymer chemistry and applications, 4th Ed., Geopolymer Institute, France, 2015.
  • 51. Abdulkareem, O.A., Mustafa Al Bakri, A.M., Kamarudin, H., Khairul Nizar, I., Saif, A.A., Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete, Construction and Building Materials, 50, 377-387, 2014.
  • 52. Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Construction and Building Materials, 55, 38-45, 2014.
  • 53. Giasuddin, H.M., Sanjayan, J.G., Ranjith, P.G., Strength of geopolymer cured in saline water in ambient conditions, Fuel, 107, 34-39, 2013.
  • 54. Galiano, Y.L., Pereira, C.F., Izquierdo, M., Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength, Materiales de Construccion, 66, 1-14, 2016.
  • 55. Peng, L. Appels, L., Su, H., Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge, Journal of Environmental Management, 213, 271-278, 2018.
  • 56. Razzaq, T., Kappe, C.O., On the energy efficiency of microwave-assisted organic reactions, ChemSusChem, 1, 123-132, 2008.
  • 57. Yurt, Ü., Emiroğlu, M., Zeolit ı̇kameli geopolimer betonlarda kür şartlarının etkileri, Academic Platform Journal of Engineering and Science 8-2, 396-402, 2020.
  • 58. Wazien, A.Z.W., Al Bakri Abdullah, M.M., Razak, R.A., Rozainy, M.A.Z., Tahir, M.F.M., Strength and density of geopolymer mortar cured at ambient temperature for use as repair material, IOP Conference Series: Materials Science and Engineering, 133, 012042, 2016.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Makaleler
Authors

Kübra Ekiz Barış 0000-0002-3830-7185

Early Pub Date May 17, 2024
Publication Date May 20, 2024
Submission Date March 17, 2023
Acceptance Date December 30, 2023
Published in Issue Year 2024 Volume: 39 Issue: 4

Cite

APA Ekiz Barış, K. (2024). Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2239-2252. https://doi.org/10.17341/gazimmfd.1267017
AMA Ekiz Barış K. Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü. GUMMFD. May 2024;39(4):2239-2252. doi:10.17341/gazimmfd.1267017
Chicago Ekiz Barış, Kübra. “Doğal Puzolan-Esaslı Jeopolimer üretiminde Mikrodalga kürünün Rolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 4 (May 2024): 2239-52. https://doi.org/10.17341/gazimmfd.1267017.
EndNote Ekiz Barış K (May 1, 2024) Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2239–2252.
IEEE K. Ekiz Barış, “Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü”, GUMMFD, vol. 39, no. 4, pp. 2239–2252, 2024, doi: 10.17341/gazimmfd.1267017.
ISNAD Ekiz Barış, Kübra. “Doğal Puzolan-Esaslı Jeopolimer üretiminde Mikrodalga kürünün Rolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (May 2024), 2239-2252. https://doi.org/10.17341/gazimmfd.1267017.
JAMA Ekiz Barış K. Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü. GUMMFD. 2024;39:2239–2252.
MLA Ekiz Barış, Kübra. “Doğal Puzolan-Esaslı Jeopolimer üretiminde Mikrodalga kürünün Rolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 4, 2024, pp. 2239-52, doi:10.17341/gazimmfd.1267017.
Vancouver Ekiz Barış K. Doğal puzolan-esaslı jeopolimer üretiminde mikrodalga kürünün rolü. GUMMFD. 2024;39(4):2239-52.