Research Article
BibTex RIS Cite

Can Action Observation Therapy be an Alternative to Robotic Rehabilitation to Improve Upper Extremity Functions in Stroke Patients?: A Protocol of Randomized Controlled Study

Year 2023, Issue: 21, 1218 - 1231, 05.01.2024
https://doi.org/10.38079/igusabder.1317876

Abstract

Aim: Approximately two-thirds of stroke patients have upper extremity involvement after the disease. Traditional and innovative rehabilitation programs are needed to restore of the upper extremity motor movements. This clinical trial aims to investigate and compare treatment effects robotic rehabilitation (RR) and action observation therapy (AOT) on upper-limb motor function, independence and quality of life in subacute stroke.
Method: The estimated sample of the study is 30 subacute stroke patients. Participants will be randomized into two groups (RR and AOT). All participants will receive conventional treatment for 60x3x8 minutes/day/week. In addition to conventional methods, robotic rehabilitation will be applied to the RR group, and the AOT protocol will be applied to the other group for the same duration. Assessments will be repeated at the baseline, end of the 4th and 8th weeks.
Conclusion: This paper will be the first study that compares the effects of AOT and RR on upper extremity motor functions on stroke. In addition, this study will be a reference source for systematic review or meta-analysis studies that investigate the effectiveness of AOT.

References

  • 1. Adigwe G. Quality of life of stroke survivors in Nigeria (Low-income country). Can outcome be predicted? J Clin Hypertens. 2021;23(8):1459-1462.
  • 2. Türk Börü Ü, Kulualp AŞ, Tarhan ÖF, et al. Stroke prevalence among the Turkish population in a rural area of Istanbul: A community-based study. SAGE Open Med. 2018;6:1-6.
  • 3. Luengo-Fernandez R, Violato M, Candio P, Leal J. Economic burden of stroke across Europe: A population-based cost analysis. Eur Stroke J. 2020;5(1):17-25.
  • 4. Chiu CC, Wang JJ, Hung CM, et al. Impact of multidisciplinary stroke post-acute care on cost and functional status: A prospective study based on propensity score matching. Brain Sci. 2021;11(2):1-10.
  • 5. Pucciarelli G, Ausili D, Rebora P, et al. Formal and informal care after stroke: A longitudinal analysis of survivors’ post rehabilitation hospital discharge. J Adv Nurs. 2019;75(11):2495-2505.
  • 6. Yetişgin A, Satış S. İnme nedeniyle hemipleji gelişen hastalarda rehabilitasyon sonuçlari ile maliyet arasındaki ilişki. Harran Üniversitesi Tıp Fakültesi Derg. 2019;16(2):326-330.
  • 7. Zhu MH, Wang J, Gu XD, et al. Effect of action observation therapy on daily activities and motor recovery in stroke patients. Int J Nurs Sci. 2015;2(3):279-282.
  • 8. Kim JH. Effects of a virtual reality video game exercise program on upper extremity function and daily living activities in stroke patients. J Phys Ther Sci. 2018;30(12):1408-1411.
  • 9. Shin JH, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92-98.
  • 10. Prange GB, Kottink AIR, Buurke JH, et al. The effect of Arm Support combined with rehabilitation games on upper-extremity function in subacute stroke: A randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):174-182.
  • 11. Babbar P, Vijaya Kumar K, Joshua A, Chakrapani M, Misri ZK. Adherence to home-based neuro-rehabilitation exercise program in stroke survivors. Bangladesh J Med Sci. 2021;20(1):145-153.
  • 12. Zhang JJQ, Fong KNK, Welage N, Liu KPY. The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: A systematic review. Neural Plast. 2018;2018:1-14.
  • 13. Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci. 2018;128(11):1061-1077.
  • 14. Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51-62.
  • 15. Carey L, Walsh A, Adikari A, et al. Finding the intersection of neuroplasticity, stroke recovery, and learning: scope and contributions to stroke rehabilitation. Neural Plast. 2019;2019:1-15.
  • 16. Bressi F, Bravi M, Campagnola B, et al. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: A systematic review. J Biol Regul Homeost Agents. 2020;34(5):11-44.
  • 17. Hsieh YW, Lin YH, Zhu JD, Wu CY, Lin YP, Chen CC. Treatment effects of upper limb action observation therapy and mirror therapy on rehabilitation outcomes after subacute stroke: a pilot study. Behav Neurol. 2020:1-9.
  • 18. Franceschini M, Agosti M, Cantagallo A, Sale P, Mancuso M, Buccino G. Mirror neurons: Action observation treatment as a tool in stroke rehabilitation. Eur J Phys Rehabil Med. 2010;46(4):517-523.
  • 19. Ryan D, Fullen B, Rio E, Segurado R, Stokes D, O’Sullivan C. Effect of action observation therapy in the rehabilitation of neurologic and musculoskeletal conditions: A systematic review. Arch Rehabil Res Clin Transl. 2021;3(1):100106.
  • 20. Aprile I, Germanotta M, Cruciani A, et al. Upper limb robotic rehabilitation after stroke: A multicenter, randomized clinical trial. J Neurol Phys Ther. 2020;44(1):3-14.
  • 21. Mazzoleni S, Duret C, Grosmaire AG, Battini E. Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. Biomed Res Int. 2017;2017.
  • 22. de Lima AC, Christofoletti G. Exercises with action observation contribute to upper limb recovery in chronic stroke patients: A controlled clinical trial. Motriz Rev Educ Fis. 2020;26(1):e10200148.
  • 23. Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: Prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549-555.
  • 24. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of ıts measurement properties. Neurorehabil Neural Repair. 2002;16(3):232-240.
  • 25. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125-132.
  • 26. Morris DM, Uswatte G, Crago JE, Cook EW, Taub E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001;82(6):750-755.
  • 27. Küçükdeveci AA, Yavuzer G, Elhan AH, Sonel B, Tennant A. Adaptation of the functional independence measure for use in Turkey. Clin Rehabil. 2001;15(3):311-319.
  • 28. Emre A, Çetiner M, Korkut Y. Quality of life and related factors in stroke patients. Turkish J Fam Med Prim Care. 2019;13(3):103-111.
  • 29. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386-391.
  • 30. Lee SH, Park G, Cho DY, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep. 2020;10(1):1806.
  • 31. Desrosiers J, Malouin F, Richards C, Bourbonnais D, Rochette A, Bravo G. Comparison of changes in upper and lower extremity impairments and disabilities after stroke. Int J Rehabil Res. 2003;26(2):109-116.
  • 32. Zhao M, Wang G, Wang A, Cheng LJ, Lau Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci. 2022;43(3):1641-1657.
  • 33. Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-assisted therapy for upper extremity motor impairment after stroke: a systematic review and meta-analysis. Phys Ther. 2021;101(4):1-13.
  • 34. Reis SB, Bernardo WM, Oshiro CA, Krebs HI, Conforto AB. Effects of robotic therapy associated with noninvasive brain stimulation on upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials. Neurorehabil Neural Repair. 2021;35(3):256-266.
  • 35. Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020;10(8):1-16.
  • 36. Taravati S, Capaci K, Uzumcugil H, Tanigor G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: a randomized controlled study. Neurol Sci. 2022;43(2):1177-1188.

İnme Hastalarında Üst Ekstremite Fonksiyonlarını İyileştirmek İçin Hareket Gözlem Terapisi Robotik Rehabilitasyona Alternatif Olabilir mi?: Randomize Kontrollü Çalışma Protokolü

Year 2023, Issue: 21, 1218 - 1231, 05.01.2024
https://doi.org/10.38079/igusabder.1317876

Abstract

Amaç: İnme hastalarının yaklaşık üçte ikisinde hastalıktan sonra üst ekstremite etkilenimi meydana gelir. Bu sebeple, üst ekstremite motor hareketlerini restore etmek için geleneksel ve yenilikçi rehabilitasyon programlarına ihtiyaç vardır. Bu klinik araştırma, robotik rehabilitasyon (RR) ve hareket gözlem tedavilerinin (AOT) subakut inmeli hastalarda üst ekstremite motor fonksiyonları, bağımsızlık ve yaşam kalitesi üzerindeki tedavi etkilerini araştırmayı ve karşılaştırmayı amaçlamaktadır.
Yöntem: Çalışmanın tahmini örneklem büyüklüğü 30 subakut inmeli hasta olacaktır. Katılımcılar randomizasyon yöntemiyle iki gruba (RR ve AOT) ayrılacaktır. Tüm katılımcılar 60x3x8 dakika/gün/hafta konvansiyonel tedavi alacaklardır. RR grubuna konvansiyonel yöntemlere ek olarak robotik rehabilitasyon, diğer gruba ise aynı süre boyunca AOT protokolü uygulanacaktır. Değerlendirmeler başlangıçta, 4. ve 8. haftaların sonunda tekrarlanacaktır.
Sonuç: Bu makale AOT ve RR'nin inmeli hastalarda üst ekstremite motor fonksiyonları üzerindeki etkilerini karşılaştıran ilk çalışma olacaktır. Ayrıca bu çalışma, AOT'nin etkinliğini araştıran sistematik inceleme veya meta-analiz çalışmaları için bir referans kaynağı olacaktır.

References

  • 1. Adigwe G. Quality of life of stroke survivors in Nigeria (Low-income country). Can outcome be predicted? J Clin Hypertens. 2021;23(8):1459-1462.
  • 2. Türk Börü Ü, Kulualp AŞ, Tarhan ÖF, et al. Stroke prevalence among the Turkish population in a rural area of Istanbul: A community-based study. SAGE Open Med. 2018;6:1-6.
  • 3. Luengo-Fernandez R, Violato M, Candio P, Leal J. Economic burden of stroke across Europe: A population-based cost analysis. Eur Stroke J. 2020;5(1):17-25.
  • 4. Chiu CC, Wang JJ, Hung CM, et al. Impact of multidisciplinary stroke post-acute care on cost and functional status: A prospective study based on propensity score matching. Brain Sci. 2021;11(2):1-10.
  • 5. Pucciarelli G, Ausili D, Rebora P, et al. Formal and informal care after stroke: A longitudinal analysis of survivors’ post rehabilitation hospital discharge. J Adv Nurs. 2019;75(11):2495-2505.
  • 6. Yetişgin A, Satış S. İnme nedeniyle hemipleji gelişen hastalarda rehabilitasyon sonuçlari ile maliyet arasındaki ilişki. Harran Üniversitesi Tıp Fakültesi Derg. 2019;16(2):326-330.
  • 7. Zhu MH, Wang J, Gu XD, et al. Effect of action observation therapy on daily activities and motor recovery in stroke patients. Int J Nurs Sci. 2015;2(3):279-282.
  • 8. Kim JH. Effects of a virtual reality video game exercise program on upper extremity function and daily living activities in stroke patients. J Phys Ther Sci. 2018;30(12):1408-1411.
  • 9. Shin JH, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92-98.
  • 10. Prange GB, Kottink AIR, Buurke JH, et al. The effect of Arm Support combined with rehabilitation games on upper-extremity function in subacute stroke: A randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):174-182.
  • 11. Babbar P, Vijaya Kumar K, Joshua A, Chakrapani M, Misri ZK. Adherence to home-based neuro-rehabilitation exercise program in stroke survivors. Bangladesh J Med Sci. 2021;20(1):145-153.
  • 12. Zhang JJQ, Fong KNK, Welage N, Liu KPY. The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: A systematic review. Neural Plast. 2018;2018:1-14.
  • 13. Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci. 2018;128(11):1061-1077.
  • 14. Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51-62.
  • 15. Carey L, Walsh A, Adikari A, et al. Finding the intersection of neuroplasticity, stroke recovery, and learning: scope and contributions to stroke rehabilitation. Neural Plast. 2019;2019:1-15.
  • 16. Bressi F, Bravi M, Campagnola B, et al. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: A systematic review. J Biol Regul Homeost Agents. 2020;34(5):11-44.
  • 17. Hsieh YW, Lin YH, Zhu JD, Wu CY, Lin YP, Chen CC. Treatment effects of upper limb action observation therapy and mirror therapy on rehabilitation outcomes after subacute stroke: a pilot study. Behav Neurol. 2020:1-9.
  • 18. Franceschini M, Agosti M, Cantagallo A, Sale P, Mancuso M, Buccino G. Mirror neurons: Action observation treatment as a tool in stroke rehabilitation. Eur J Phys Rehabil Med. 2010;46(4):517-523.
  • 19. Ryan D, Fullen B, Rio E, Segurado R, Stokes D, O’Sullivan C. Effect of action observation therapy in the rehabilitation of neurologic and musculoskeletal conditions: A systematic review. Arch Rehabil Res Clin Transl. 2021;3(1):100106.
  • 20. Aprile I, Germanotta M, Cruciani A, et al. Upper limb robotic rehabilitation after stroke: A multicenter, randomized clinical trial. J Neurol Phys Ther. 2020;44(1):3-14.
  • 21. Mazzoleni S, Duret C, Grosmaire AG, Battini E. Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. Biomed Res Int. 2017;2017.
  • 22. de Lima AC, Christofoletti G. Exercises with action observation contribute to upper limb recovery in chronic stroke patients: A controlled clinical trial. Motriz Rev Educ Fis. 2020;26(1):e10200148.
  • 23. Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: Prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549-555.
  • 24. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of ıts measurement properties. Neurorehabil Neural Repair. 2002;16(3):232-240.
  • 25. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125-132.
  • 26. Morris DM, Uswatte G, Crago JE, Cook EW, Taub E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001;82(6):750-755.
  • 27. Küçükdeveci AA, Yavuzer G, Elhan AH, Sonel B, Tennant A. Adaptation of the functional independence measure for use in Turkey. Clin Rehabil. 2001;15(3):311-319.
  • 28. Emre A, Çetiner M, Korkut Y. Quality of life and related factors in stroke patients. Turkish J Fam Med Prim Care. 2019;13(3):103-111.
  • 29. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386-391.
  • 30. Lee SH, Park G, Cho DY, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep. 2020;10(1):1806.
  • 31. Desrosiers J, Malouin F, Richards C, Bourbonnais D, Rochette A, Bravo G. Comparison of changes in upper and lower extremity impairments and disabilities after stroke. Int J Rehabil Res. 2003;26(2):109-116.
  • 32. Zhao M, Wang G, Wang A, Cheng LJ, Lau Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci. 2022;43(3):1641-1657.
  • 33. Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-assisted therapy for upper extremity motor impairment after stroke: a systematic review and meta-analysis. Phys Ther. 2021;101(4):1-13.
  • 34. Reis SB, Bernardo WM, Oshiro CA, Krebs HI, Conforto AB. Effects of robotic therapy associated with noninvasive brain stimulation on upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials. Neurorehabil Neural Repair. 2021;35(3):256-266.
  • 35. Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020;10(8):1-16.
  • 36. Taravati S, Capaci K, Uzumcugil H, Tanigor G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: a randomized controlled study. Neurol Sci. 2022;43(2):1177-1188.
There are 36 citations in total.

Details

Primary Language English
Subjects Rehabilitation
Journal Section Articles
Authors

Emre Şenocak 0000-0003-3677-9813

Elif Korkut 0000-0002-4778-3781

Adem Aktürk 0000-0002-2487-5720

Aysel Yıldız Özer 0000-0003-0739-6143

Early Pub Date January 8, 2024
Publication Date January 5, 2024
Acceptance Date December 11, 2023
Published in Issue Year 2023 Issue: 21

Cite

JAMA Şenocak E, Korkut E, Aktürk A, Yıldız Özer A. Can Action Observation Therapy be an Alternative to Robotic Rehabilitation to Improve Upper Extremity Functions in Stroke Patients?: A Protocol of Randomized Controlled Study. IGUSABDER. 2024;:1218–1231.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)