Erratum
BibTex RIS Cite

Erratum: Life Cycle Assessment and Characterization of Tincal Ore Reinforced Polyester and Vinylester Composites

Year 2023, Volume: 6 Issue: 2, 999 - 999, 01.10.2023
The original article was published on November 30, 2022. https://dergipark.org.tr/en/pub/jotcsb/issue/70634/1145817

Erratum Note

In the original article, Table 1 appearing on page 186 is wrong, and the authors provided the correct Table 1 as seen in the attached file. Please be advised, Mr. Barbaros Akkurt, PhD, Managing editor, JOTCSB

Abstract

In this study, the quality performance, compressive strength, surface hardness, electrical conductivity, and life cycle assessment (LCA) of the composites produced by reinforcing tincal (Na2B4O7.10H2O) into polyester and vinylester resins at different rates have been determined. Tincal ore, which is ground with a particle size of 74-149 microns, is dried in an oven at 105 °C for 2 hours and then added to the resins at the ratios of 0 wt.%, 1 wt.%, 2 wt.%, and 3 wt.%. According to the results obtained, it has been determined that the compressive strength and Shore D hardness of the composite raises as the tincal mass ratio increases up to certain amounts. According to the mechanical test results, it is found that 3 wt.% tincal reinforcement maximized the compressive strength of the polyester composite, and 2 wt.% tincal reinforcement maximized the compressive strength of the vinylester composite. In the electrical conductivity test results, it is seen that the first relaxation time of the polyester composite is 2.14·10-4 s and the relaxation times of vinylester composite vary between 10-4 and 10-6 seconds. LCA results showed that vinylester composite had more environmental effects than polyester composite except for ozone layer depletion (ODP) effect. Although there is a partial increase (<0.5%) in the environmental impact of composites with tincal reinforcement, it is thought that the increase in the technical performance of the composites will tolerate this partial increase.

Thanks

The authors thank the managers and employees of Kırka Boron Operations Directorate of Eti Maden Company, who provided the supply of tincal ore used in the study.

References

  • 1. Bai T, Wang D, Yan J, Cheng W, Cheng H, Shi SQ, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Composites Science and Technology [Internet]. 2021 Sep [cited 2022 Nov 8];213:108951.
  • 2. Chen YH, Wu CH, Chen YC. Optimized condition for eco-friendly wood composites manufactured from castor oil-based polyurethane. Construction and Building Materials [Internet]. 2021 Nov [cited 2022 Nov 8];306:124789.
  • 3. Teng K, Ni Y, Wang W, Wang H, Xu Z, Chen L, et al. Adjustable micro-structure, higher-level mechanical behavior and conductivities of preformed graphene architecture/epoxy composites via RTM route. Composites Part A: Applied Science and Manufacturing [Internet]. 2017 Mar [cited 2022 Nov 8];94:178–88.
  • 4. Lin W, Shi QQ, Chen H, Wang JN. Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding. Carbon [Internet]. 2019 Nov [cited 2022 Nov 8];153:308–14.
  • 5. Wang H, Yuan J, Zhu Z, Yin X, Weng Y, Wang Z, et al. High performance epoxy resin composites modified with multifunctional thiophene/ phosphaphenanthrene-based flame retardant: Excellent flame retardance, strong mechanical property and high transparency. Composites Part B: Engineering [Internet]. 2021 Dec [cited 2022 Nov 8];227:109392.
  • 6. Petraşcu OL, Manole R, Pascu AM. The behavior of composite materials based on polyurethan resin subjected to uniaxial tensile test. Materials Today: Proceedings [Internet]. 2022 [cited 2022 Nov 8];62:2673–8.
  • 7. Erturk AT, Yarar E, Vatansever F, Sahin AE, Kilinçel M, Alpay YO. A comparative study of mechanical and machining performance of polymer hybrid and carbon fiber epoxy composite materials. Polymers and Polymer Composites [Internet]. 2021 Nov [cited 2022 Nov 8];29(9_suppl):S655–66.
  • 8. Alpay Y, Uygur I, Kilincel M. On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics. Polymers and Polymer Composites [Internet]. 2020 Jul [cited 2022 Nov 8];28(6):433–9.
  • 9. Xu W, Wu X, Shi B. Toughening agent for melamine formaldehyde resin: A new method for recycling chrome shavings. Polymer [Internet]. 2022 Jun [cited 2022 Nov 8];253:124979.
  • 10. Lakhiar MT, Bai Y, Wong LS, Paul SC, Anggraini V, Kong SY. Mechanical and durability properties of epoxy mortar incorporating coal bottom ash as filler. Construction and Building Materials [Internet]. 2022 Jan [cited 2022 Nov 8];315:125677.
  • 11. Luo C, Li J, Chen Z, Lin J, Chen L, He S. Improving the charge dissipating performance and breakdown strength of epoxy resin by incorporating polydopamine-coated barium titanate. Materials Today Communications [Internet]. 2022 Jun [cited 2022 Nov 8];31:103619.
  • 12. Jia F, Fagbohun EO, Wang Q, Zhu D, Zhang J, Gong B, et al. Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers. Carbon Resources Conversion [Internet]. 2021 [cited 2022 Nov 8];4:190–6.
  • 13. Halim ZAA, Yajid MAM, Nurhadi FA, Ahmad N, Hamdan H. Effect of silica aerogel – Aluminium trihydroxide hybrid filler on the physio-mechanical and thermal decomposition behaviour of unsaturated polyester resin composite. Polymer Degradation and Stability [Internet]. 2020 Dec [cited 2022 Nov 8];182:109377.
  • 14. Reuter J, Greiner L, Kukla P, Döring M. Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate. Polymer Degradation and Stability [Internet]. 2020 Aug [cited 2022 Nov 8];178:109134.
  • 15. Na T, Liu X, Jiang H, Zhao L, Zhao C. Enhanced thermal conductivity of fluorinated epoxy resins by incorporating inorganic filler. Reactive and Functional Polymers [Internet]. 2018 Jul [cited 2022 Nov 8];128:84–90.
  • 16. Gangil B, Ranakoti L, Verma SK, Singh T. Utilization of waste dolomite dust in carbon fiber reinforced vinylester composites. Journal of Materials Research and Technology [Internet]. 2022 May [cited 2022 Nov 8];18:3291–301.
  • 17. Feng T, Wang Y, Dong H, Piao J, Wang Y, Ren J, et al. Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: Improving thermal stability, flame retardancy, and smoke suppression. Polymer Degradation and Stability [Internet]. 2022 May [cited 2022 Nov 8];199:109899.
  • 18. Boztoprak Y, Kartal İ. Bor Nitrür Partikülleriyle Takviyelendirilmiş Vinil Ester Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi [Internet]. 2019 Jan 31 [cited 2022 Nov 8];
  • 19. Orhan R, Aydoğmuş E, Topuz S, Arslanoğlu H. Investigation of thermo-mechanical characteristics of borax reinforced polyester composites. Journal of Building Engineering [Internet]. 2021 Oct [cited 2022 Nov 8];42:103051.
  • 20. Yılmaz E, Arslan H, Subaşı S, Uğur LO, Bideci A. Geri Dönüştürülmüş Lastik Atık İkameli Poliüretan Dolgulu Kompozit Panellerin Yaşam Döngüsü Değerlendirmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi [Internet]. 2018 Aug 1 [cited 2022 Nov 8];6(4):1224–33.
  • 21. Yılmaz E, Aykanat B, Çomak B. Environmental life cycle assessment of rockwool filled aluminum sandwich facade panels in Turkey. Journal of Building Engineering [Internet]. 2022 Jun [cited 2022 Nov 8];50:104234.
  • 22. Benli Yıldız N, Arslan H, Yılmaz E. Life Cycle Assessment of Building Materials: Literature Rewiew. JOR. 2020;8(1):210–9.
  • 23. La Rosa AD, Greco S, Tosto C, Cicala G. LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios. Journal of Cleaner Production [Internet]. 2021 Jul [cited 2022 Nov 12];304:127158.
  • 24. La Rosa AD, Banatao DR, Pastine SJ, Latteri A, Cicala G. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Composites Part B: Engineering [Internet]. 2016 Nov [cited 2022 Nov 12];104:17–25.
  • 25. Li X, Lv X, Zhou X, Meng W, Bao Y. Upcycling of waste concrete in eco-friendly strain-hardening cementitious composites: Mixture design, structural performance, and life-cycle assessment. Journal of Cleaner Production [Internet]. 2022 Jan [cited 2022 Nov 12];330:129911.
  • 26. Kousis I, Fabiani C, Pisello AL. Could a bio-resin and transparent pavement improve the urban environment? An in field thermo-optical investigation and life-cycle assessment. Sustainable Cities and Society [Internet]. 2022 Apr [cited 2022 Nov 12];79:103597.
  • 27. Forcellese A, Marconi M, Simoncini M, Vita A. Life cycle impact assessment of different manufacturing technologies for automotive CFRP components. Journal of Cleaner Production [Internet]. 2020 Oct [cited 2022 Nov 12];271:122677.
  • 28. Aydoğmuş E, Arslanoğlu H, Dağ M. Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN. Journal of Building Engineering [Internet]. 2021 Dec [cited 2022 Nov 12];44:103337.
  • 29. Aydoğmuş E, Arslanoğlu H. Kinetics of thermal decomposition of the polyester nanocomposites. Petroleum Science and Technology [Internet]. 2021 Jul 18 [cited 2022 Nov 12];39(13–14):484–500.
  • 30. Aydoğmuş E. Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN. Biomass Conv Bioref [Internet]. 2022 Oct [cited 2022 Nov 12];12(10):4799–816.
  • 31. Aydoğmuş E, Dağ M, Yalçın ZG, Arslanoğlu H. Synthesis and characterization of waste polyethylene reinforced modified castor oil‐based polyester biocomposite. J of Applied Polymer Sci [Internet]. 2022 Jul 15 [cited 2022 Nov 12];139(27).
  • 32. Şahal H, Aydoğmuş E, Arslanoğlu H. Investigation of thermophysical properties of synthesized SA and nano-alumina reinforced polyester composites. Petroleum Science and Technology [Internet]. 2022 Aug 8 [cited 2022 Nov 12];1–17.
  • 33. Demi̇rel MH, Aydoğmuş E. Atik maske takviyeli polyester kompozit üretimi ve karakterizasyonu. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi [Internet]. 2022 Jan 17 [cited 2022 Nov 12];
  • 34. Demi̇rel MH, Aydoğmuş E. Waste Polyurethane Reinforced Polyester Composite, Production, and Characterization. Journal of the Turkish Chemical Society Section A: Chemistry [Internet]. 2022 Mar 26 [cited 2022 Nov 12];443–52.
  • 35. Yanen C, Aydoğmuş E. Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite. DÜFED. 2021;10(2):121–32.
  • 36. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assessment [Internet]. 2006 Mar [cited 2022 Nov 12];11(2):80–5.
  • 37. Chard J, Basson L, Creech G, Jesson D, Smith P. Shades of Green: Life Cycle Assessment of a Urethane Methacrylate/Unsaturated Polyester Resin System for Composite Materials. Sustainability [Internet]. 2019 Feb 15 [cited 2022 Nov 12];11(4):1001.
  • 38. Yanen C, Dağ M, Aydoğmuş E. Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites. European Journal of Science and Technology [Internet]. 2022 May 3 [cited 2022 Nov 12];

Erratum:

Year 2023, Volume: 6 Issue: 2, 999 - 999, 01.10.2023
The original article was published on November 30, 2022. https://dergipark.org.tr/en/pub/jotcsb/issue/70634/1145817

Erratum Note

Abstract

References

  • 1. Bai T, Wang D, Yan J, Cheng W, Cheng H, Shi SQ, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Composites Science and Technology [Internet]. 2021 Sep [cited 2022 Nov 8];213:108951.
  • 2. Chen YH, Wu CH, Chen YC. Optimized condition for eco-friendly wood composites manufactured from castor oil-based polyurethane. Construction and Building Materials [Internet]. 2021 Nov [cited 2022 Nov 8];306:124789.
  • 3. Teng K, Ni Y, Wang W, Wang H, Xu Z, Chen L, et al. Adjustable micro-structure, higher-level mechanical behavior and conductivities of preformed graphene architecture/epoxy composites via RTM route. Composites Part A: Applied Science and Manufacturing [Internet]. 2017 Mar [cited 2022 Nov 8];94:178–88.
  • 4. Lin W, Shi QQ, Chen H, Wang JN. Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding. Carbon [Internet]. 2019 Nov [cited 2022 Nov 8];153:308–14.
  • 5. Wang H, Yuan J, Zhu Z, Yin X, Weng Y, Wang Z, et al. High performance epoxy resin composites modified with multifunctional thiophene/ phosphaphenanthrene-based flame retardant: Excellent flame retardance, strong mechanical property and high transparency. Composites Part B: Engineering [Internet]. 2021 Dec [cited 2022 Nov 8];227:109392.
  • 6. Petraşcu OL, Manole R, Pascu AM. The behavior of composite materials based on polyurethan resin subjected to uniaxial tensile test. Materials Today: Proceedings [Internet]. 2022 [cited 2022 Nov 8];62:2673–8.
  • 7. Erturk AT, Yarar E, Vatansever F, Sahin AE, Kilinçel M, Alpay YO. A comparative study of mechanical and machining performance of polymer hybrid and carbon fiber epoxy composite materials. Polymers and Polymer Composites [Internet]. 2021 Nov [cited 2022 Nov 8];29(9_suppl):S655–66.
  • 8. Alpay Y, Uygur I, Kilincel M. On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics. Polymers and Polymer Composites [Internet]. 2020 Jul [cited 2022 Nov 8];28(6):433–9.
  • 9. Xu W, Wu X, Shi B. Toughening agent for melamine formaldehyde resin: A new method for recycling chrome shavings. Polymer [Internet]. 2022 Jun [cited 2022 Nov 8];253:124979.
  • 10. Lakhiar MT, Bai Y, Wong LS, Paul SC, Anggraini V, Kong SY. Mechanical and durability properties of epoxy mortar incorporating coal bottom ash as filler. Construction and Building Materials [Internet]. 2022 Jan [cited 2022 Nov 8];315:125677.
  • 11. Luo C, Li J, Chen Z, Lin J, Chen L, He S. Improving the charge dissipating performance and breakdown strength of epoxy resin by incorporating polydopamine-coated barium titanate. Materials Today Communications [Internet]. 2022 Jun [cited 2022 Nov 8];31:103619.
  • 12. Jia F, Fagbohun EO, Wang Q, Zhu D, Zhang J, Gong B, et al. Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers. Carbon Resources Conversion [Internet]. 2021 [cited 2022 Nov 8];4:190–6.
  • 13. Halim ZAA, Yajid MAM, Nurhadi FA, Ahmad N, Hamdan H. Effect of silica aerogel – Aluminium trihydroxide hybrid filler on the physio-mechanical and thermal decomposition behaviour of unsaturated polyester resin composite. Polymer Degradation and Stability [Internet]. 2020 Dec [cited 2022 Nov 8];182:109377.
  • 14. Reuter J, Greiner L, Kukla P, Döring M. Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate. Polymer Degradation and Stability [Internet]. 2020 Aug [cited 2022 Nov 8];178:109134.
  • 15. Na T, Liu X, Jiang H, Zhao L, Zhao C. Enhanced thermal conductivity of fluorinated epoxy resins by incorporating inorganic filler. Reactive and Functional Polymers [Internet]. 2018 Jul [cited 2022 Nov 8];128:84–90.
  • 16. Gangil B, Ranakoti L, Verma SK, Singh T. Utilization of waste dolomite dust in carbon fiber reinforced vinylester composites. Journal of Materials Research and Technology [Internet]. 2022 May [cited 2022 Nov 8];18:3291–301.
  • 17. Feng T, Wang Y, Dong H, Piao J, Wang Y, Ren J, et al. Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: Improving thermal stability, flame retardancy, and smoke suppression. Polymer Degradation and Stability [Internet]. 2022 May [cited 2022 Nov 8];199:109899.
  • 18. Boztoprak Y, Kartal İ. Bor Nitrür Partikülleriyle Takviyelendirilmiş Vinil Ester Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi [Internet]. 2019 Jan 31 [cited 2022 Nov 8];
  • 19. Orhan R, Aydoğmuş E, Topuz S, Arslanoğlu H. Investigation of thermo-mechanical characteristics of borax reinforced polyester composites. Journal of Building Engineering [Internet]. 2021 Oct [cited 2022 Nov 8];42:103051.
  • 20. Yılmaz E, Arslan H, Subaşı S, Uğur LO, Bideci A. Geri Dönüştürülmüş Lastik Atık İkameli Poliüretan Dolgulu Kompozit Panellerin Yaşam Döngüsü Değerlendirmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi [Internet]. 2018 Aug 1 [cited 2022 Nov 8];6(4):1224–33.
  • 21. Yılmaz E, Aykanat B, Çomak B. Environmental life cycle assessment of rockwool filled aluminum sandwich facade panels in Turkey. Journal of Building Engineering [Internet]. 2022 Jun [cited 2022 Nov 8];50:104234.
  • 22. Benli Yıldız N, Arslan H, Yılmaz E. Life Cycle Assessment of Building Materials: Literature Rewiew. JOR. 2020;8(1):210–9.
  • 23. La Rosa AD, Greco S, Tosto C, Cicala G. LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios. Journal of Cleaner Production [Internet]. 2021 Jul [cited 2022 Nov 12];304:127158.
  • 24. La Rosa AD, Banatao DR, Pastine SJ, Latteri A, Cicala G. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Composites Part B: Engineering [Internet]. 2016 Nov [cited 2022 Nov 12];104:17–25.
  • 25. Li X, Lv X, Zhou X, Meng W, Bao Y. Upcycling of waste concrete in eco-friendly strain-hardening cementitious composites: Mixture design, structural performance, and life-cycle assessment. Journal of Cleaner Production [Internet]. 2022 Jan [cited 2022 Nov 12];330:129911.
  • 26. Kousis I, Fabiani C, Pisello AL. Could a bio-resin and transparent pavement improve the urban environment? An in field thermo-optical investigation and life-cycle assessment. Sustainable Cities and Society [Internet]. 2022 Apr [cited 2022 Nov 12];79:103597.
  • 27. Forcellese A, Marconi M, Simoncini M, Vita A. Life cycle impact assessment of different manufacturing technologies for automotive CFRP components. Journal of Cleaner Production [Internet]. 2020 Oct [cited 2022 Nov 12];271:122677.
  • 28. Aydoğmuş E, Arslanoğlu H, Dağ M. Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN. Journal of Building Engineering [Internet]. 2021 Dec [cited 2022 Nov 12];44:103337.
  • 29. Aydoğmuş E, Arslanoğlu H. Kinetics of thermal decomposition of the polyester nanocomposites. Petroleum Science and Technology [Internet]. 2021 Jul 18 [cited 2022 Nov 12];39(13–14):484–500.
  • 30. Aydoğmuş E. Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN. Biomass Conv Bioref [Internet]. 2022 Oct [cited 2022 Nov 12];12(10):4799–816.
  • 31. Aydoğmuş E, Dağ M, Yalçın ZG, Arslanoğlu H. Synthesis and characterization of waste polyethylene reinforced modified castor oil‐based polyester biocomposite. J of Applied Polymer Sci [Internet]. 2022 Jul 15 [cited 2022 Nov 12];139(27).
  • 32. Şahal H, Aydoğmuş E, Arslanoğlu H. Investigation of thermophysical properties of synthesized SA and nano-alumina reinforced polyester composites. Petroleum Science and Technology [Internet]. 2022 Aug 8 [cited 2022 Nov 12];1–17.
  • 33. Demi̇rel MH, Aydoğmuş E. Atik maske takviyeli polyester kompozit üretimi ve karakterizasyonu. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi [Internet]. 2022 Jan 17 [cited 2022 Nov 12];
  • 34. Demi̇rel MH, Aydoğmuş E. Waste Polyurethane Reinforced Polyester Composite, Production, and Characterization. Journal of the Turkish Chemical Society Section A: Chemistry [Internet]. 2022 Mar 26 [cited 2022 Nov 12];443–52.
  • 35. Yanen C, Aydoğmuş E. Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite. DÜFED. 2021;10(2):121–32.
  • 36. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assessment [Internet]. 2006 Mar [cited 2022 Nov 12];11(2):80–5.
  • 37. Chard J, Basson L, Creech G, Jesson D, Smith P. Shades of Green: Life Cycle Assessment of a Urethane Methacrylate/Unsaturated Polyester Resin System for Composite Materials. Sustainability [Internet]. 2019 Feb 15 [cited 2022 Nov 12];11(4):1001.
  • 38. Yanen C, Dağ M, Aydoğmuş E. Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites. European Journal of Science and Technology [Internet]. 2022 May 3 [cited 2022 Nov 12];
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Erratum
Authors

Emrah Yılmaz 0000-0002-9040-3940

Ercan Aydoğmuş 0000-0002-1643-2487

Ahmet Demir 0000-0002-8702-1941

Publication Date October 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Yılmaz, E., Aydoğmuş, E., & Demir, A. (2023). Life Cycle Assessment and Characterization of Tincal Ore Reinforced Polyester and Vinylester Composites. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 6(2), 999-999.

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)