Onnhaniset Sciance Journal
CS7

Triangles In The De-Sitter Plane

Tuğba MERT ${ }^{1 *}$ (iD) Ümit TOKESSER ${ }^{2}$ (iD
${ }^{1}$ Sivas Cumhuriyet University, Faculty of Science, Department of Mathematics Science, Sivas, TURKEY
${ }^{2}$ Kastamonu University, Faculty of Art and Science, Department of Mathematics Science, Kastamonu, TURKEY

Received: 26.11.2018; Accepted: 20.03.2019
http://dx.doi.org/10.17776/csj. 487548

Abstract

The triangular varieties in the de-Sitter plane were investigated and the formulas of triangles of nondegenerate and type of triangles were obtained in terms of dihedral angles.

Keywords: Triangle, Dihedral angles, de-Sitter plane

De-Sitter Düzleminde Üçenler

Özet. Sitter düzlemindeki üçgen çeşitleri incelenip, bu üçgenlerin dejenere olmayanlarından olan ve tipindeki üçgenlerin alan formülleri dihedral açılar cinsinden elde edilmiştir.

Anahtar Kelimeler: Üçgen, Dihedral açı, de-Sitter düzlemi

1. INTRODUCTION

The hypothesis that the shortest distance between two points is the correct part between these points is also used by Archimedes. At the end of the nineteenth century, the concept of geodesy emerged from the problem of finding the shortest path connecting two points on a surface. In 1732 Euler published a differential equation of geodesics on a surface. Thus, it was shown that the geodesics given depending on the two points can be given only depending on the type of surface. Latin translations of Archimedes and Apollonius in the Middle Ages and the introduction of Fermat and Dekart in analytical geometry in 1637 led to the development of geometric techniques used to find the tangents of plane curves in the first half of the 19th century. The algebraic formula $y^{2}=x^{3}$ obtained by using analytical geometry, which gives the length of a nonlinear curve, was found separately by Neil van Heuraet and Fermat around 1658. In the fourth quarter of the 19th century, the Euclidean arc length element was found independently by Newton and Leibnitz and calculated the arc length of these two geometric plane curves using integral. The concept of arc length in metric spaces was entered by Menger in 1930.

The use of other metric spaces used to concretize abstract concepts (such as relativity) in which the Euclidean metric cannot be a model is inevitable. Today we see these spaces as Lorentzian, global, hyperbolic and de-Sitter. Since the curvature at one point of a curve in these spaces measures the amount of deviation at this point and the curvature of the geodesics is zero, we can correctly consider the geodesy through the two given points of the space. In the space we consider, if we solve the differential equation of geodesics with respect to two points, then we see that solution will be unique. This coincides with a single true hypothesis from two points in the Euclidean space. In this case, the correct part of the Euclidean

[^0]space is limited to two points and in this case it is a geodesic part limited to two points. The triangular region in the Euclidean space is the intersection of the semi-space determined by the external unit normals of the lines, and in this case it is the intersection of the semi-spaces determined by the geodesics. Furthermore, Asmus [1] obtain the type of triangles in de-Sitter plane by using geodesic segments.

Theorem 1

$p, q \in S_{1}^{n}$ and $V=S p\{p, q\}$ is taken.
(i) If V spacelike, the parametrical equation of the line passing through p, q is

$$
\alpha(t)=(\cos t) p+(\sin t)\left(\frac{q-\langle p, q\rangle p}{\|q-\langle p, q\rangle p\|}\right), t \in I R
$$

(ii) If V timelike, the parametrical equation of the line passing through p, q is

$$
\beta(s)=(\cosh s) p+(\sinh s)\left(\frac{q-\langle p, q\rangle p}{\|q-\langle p, q\rangle p\|}\right), s \in I R
$$

(iii) If V null, the parametrical equation of the line passing through p, q is

$$
\gamma(\lambda)=p+\lambda(q-p), \lambda \in I R
$$

Proof

It can be seen in [2] (in Proposition 28).

Theorem 2

$p, q \in S_{1}^{n}$ and $V=S p\{p, q\}$ is taken.
(i) If V spacelike, $\langle p, q\rangle=\cos t_{0}$ respectively, the length of the line segment t_{0} and the parametric equation limited with p, q are

$$
\alpha(t)=(\cos t) p+(\sin t)\left(\frac{q-\cos t_{0} p}{\sin t_{0}}\right), 0 \leq t \leq t_{0} .
$$

(ii) If V timelike, $\langle p, q\rangle=\cosh s_{0}$ respectively, the length of the line segment s_{0} and the parametrical equation limited with p, q are

$$
\beta(s)=(\cosh s) p+(\sinh s)\left(\frac{q-\cosh s_{0} p}{\sinh s_{0}}\right), 0 \leq s \leq s_{0} .
$$

(iii) If V null

$$
\gamma(\lambda)=p+\lambda(q-p), 0 \leq \lambda \leq 1
$$

Proof

As Theorem 1.1 (i) is $\alpha(0)=p, \quad \alpha\left(t_{0}\right)=q \quad$ and $\quad \alpha \quad$ is also continuous $\alpha(t)=(\cos t) p+(\sin t)\left(\frac{q-\cos t_{0} p}{\sin t_{0}}\right), 0 \leq t \leq t_{0}$ point is on line segment limited with p, q.
As Theorem 1.1 (ii) is $\beta(0)=p, \quad \beta\left(s_{0}\right)=q \quad$ and $\quad \beta \quad$ is also continuous $\beta(s)=(\cosh s) p+(\sinh s)\left(\frac{q-\cosh s_{0} p}{\sinh s_{0}}\right), 0 \leq s \leq s_{0}$ point is on line segment limited with p, q. As from Theorem $1.1 \quad \gamma(0)=p \quad$ and $\quad \gamma(1)=q \quad$ and $\quad \gamma(1)=q$ and $\quad \gamma \quad$ are continuous $\gamma(\lambda)=p+\lambda(q-p), 0 \leq \lambda \leq 1$ is parametrical equation of the line segment limited with p, q.

1.1. Triangle Types in de-Sitter Space

a. ${ }_{0} \Delta_{0}^{3}$ Lightlike edged triangle

Figure 1. Lightlike edged triangle
b. ${ }_{1} \Delta_{0}^{2}$ Spacelike based lightlike edged triangle

Figure 2. Spacelike based null edged triangle
c. Lightlike based timelike edged triangle

Figure 3. Null based timelike edged triangle
d. ${ }_{0} \Delta_{1}^{2}$ Timelike based lightlike edged triangle

Figure 4. Timelike based null edged triangle
e. ${ }_{2} \Delta_{0}^{1}$ Lightlike based spacelike edged triangle

Figure 5. Null based spacelike edged triangle
f. ${ }_{1} \Delta_{1}^{1}$ Casual Scalene Triangle

Figure 6. Casual Scalene Triangle
g. ${ }_{3} \Delta_{0}^{0}$ Spacelike edged Triangle

Figure 7. Spacelike edged triangle
h. ${ }_{0} \Delta_{3}^{0}$ Timelike edged triangle

Figure 8. Timelike edged triangle

1. ${ }_{2} \Delta_{1}^{0}$ Timelike based spacelike edged triangle

Figure 9. Timelike based spacelike edged triangle
i. ${ }_{1} \Delta_{2}^{0}$ Spacelike based timelike edged triangle

Figure 10. Timelike edged spacelike based triangle

1.2. Some Properties of the Rows Passing from Two Points in the de-Sitter Space

a. The need and sufficient condition that $V=S p\left\{P_{i}, P_{j}\right\}$ is timelike $\left\langle P_{i}, P_{j}\right\rangle>1$ points are on the same part of $V \cap S_{1}^{n}$ hyperbola (from ([2] Proposition 38 situation 2).
b. The need and sufficient condition that $V=S p\left\{P_{i}, P_{j}\right\}$ is timelike $\left\langle P_{i}, P_{j}\right\rangle<-1$ points are on the same part of $V \cap S_{1}^{n}$ hyperbola (from ([2] Proposition 38 situation 2).
c. The need and sufficient condition that $V=S p\left\{P_{i}, P_{j}\right\}$ is spacelike $\left|\left\langle P_{i}, P_{j}\right\rangle\right|<1$ (from [2] Proposition 38 situation 1).
d. The need and sufficient condition that $V=S p\left\{P_{i}, P_{j}\right\}$ is null $\left|\left\langle P_{i}, P_{j}\right\rangle\right|=1$ (from [2] Proposition 38 situation 3).

Limited with P_{i}, P_{j} geodetic part is $l_{i j}$,
e. The need and sufficient condition that $l_{i j}$ is hyperbola $\left\langle P_{i}, P_{j}\right\rangle>1$
f. The need and sufficient condition that $l_{i j}$ is elips $\left|\left\langle P_{i}, P_{j}\right\rangle\right|<1 \quad$ [2].
g. The need and sufficient condition that $l_{i j}$ is null line segment $\left\langle P_{i}, P_{j}\right\rangle=1$

2. THE AREAS OF NON-DEGENERATED EDGE TRIANGLES IN de-SITTER SPACE

Definition 1

The angle between these vectors, including
Two non-null vectors in $N_{1}, N_{2} I R_{1}^{2}$ and the $\theta\left(N_{1}, N_{2}\right)$ angles between these vectors are identifed as following [3]
(i) If $\left\langle N_{1}, N_{1}\right\rangle\left\langle N_{2}, N_{2}\right\rangle>0$ ve $\left\langle N_{1}, N_{2}\right\rangle<0 ; \theta\left(N_{1}, N_{2}\right)=\arccos h\left(-\left\langle N_{1}, N_{2}\right\rangle\right)$,
(ii) If $\left\langle N_{1}, N_{1}\right\rangle\left\langle N_{2}, N_{2}\right\rangle>0$ ve $\left\langle N_{1}, N_{2}\right\rangle>0 ; \theta\left(N_{1}, N_{2}\right)=-\arccos h\left(\left\langle N_{1}, N_{2}\right\rangle\right)$,
(iii) If $\left\langle N_{1}, N_{1}\right\rangle\left\langle N_{2}, N_{2}\right\rangle<0 ; \theta\left(N_{1}, N_{2}\right)=-\arcsin h\left(\left\langle N_{1}, N_{2}\right\rangle\right)$

Definition 2

As $N_{1}, N_{2} I R_{1}^{n+1}$ are two vectors which are non-null and stretching Lorentz plane;

The θ_{12} dihedral angle in edge of $\left\{v \in I R_{1}^{n+1}:\left\langle v, N_{1}\right\rangle \geq 0,\left\langle v, N_{2}\right\rangle \geq 0\right\}$ dihedron is identified as [3]:
$\theta_{12}=-\theta\left(N_{1}, N_{2}\right)$
In the case of $S_{1}^{2}(1), 2$ - dimensional face are their peak points on the triangle on S_{1}^{2} is non-degenerate since $\left\langle P_{i}, P_{i}\right\rangle=1$. Therefore, Schülei differential formula is applicable to triangles whose edges are nonnull. There are four different triangles as ${ }_{3} \Delta_{0}^{0},{ }_{2} \Delta_{1}^{0},{ }_{1} \Delta_{2}^{0},{ }_{0} \Delta_{3}^{0}$ on S_{1}^{2} whose edges are non-null.

Theorem 3 (Schlafli Differential Formula)

The centrifugal hyperquadiene-linked component, ε marked in $S_{q}^{n}(\varepsilon), I R_{q}^{n+1}$ space, the differential of the volume of $V_{n}(\Omega)$ non-degenerated volume on $S_{q}^{n}(\varepsilon) 1$ and 2 coherent faces as

$$
d V_{n}(\Omega)=\frac{\varepsilon}{n-1} \sum_{F} V_{n-2}(F) d \alpha_{F}
$$

Here, $V_{n-2}(F)$, it is the volume of Ω 's $n-2$ face and α_{F} is the dihedral angle on the F face [3].
$n=2$ as special condition, $\{i, j, k\}$ set is a permutation of $\{1,2,3\}$ and as the angle at $\theta_{i j}, P_{k}$ edge is;

$$
\begin{equation*}
d V_{2}(\Omega)=\varepsilon\left(d \theta_{12}+d \theta_{13}+d \theta_{23}\right) \tag{2.1}
\end{equation*}
$$

2.1. Area of triangle from ${ }_{2} \Delta_{1}^{0}$ type

Figure 11. Triangle from ${ }_{2} \Delta_{1}^{0}$ type

The edges of de-Sitter triangle from ${ }_{2} \Delta_{1}^{0}$ type with $P_{1}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), P_{2}=(0,0,1), P_{3}=\left(\frac{1}{2}, 0, \frac{\sqrt{5}}{2}\right)$ corner point are:

$$
\begin{gathered}
\alpha(t)=\left(0, \frac{\cos t-\sin t}{\sqrt{2}}, \frac{\cos t+\sin t}{\sqrt{2}}\right), \quad t \in\left[0, \frac{\pi}{4}\right] \\
\beta(s)=(\sinh s, 0, \cosh s), \quad s \in\left[0, \arctan h\left(\frac{1}{\sqrt{5}}\right)\right] \\
\gamma(u)=\left(\frac{\sqrt{3} \cos u-\sqrt{5} \sin u}{2 \sqrt{3}}, \frac{2 \sin u}{\sqrt{3}}, \frac{\sqrt{5}}{2} \cos u-\frac{\sin u}{2 \sqrt{3}}\right), \quad u \in\left[0, \arccos \left(\frac{\sqrt{5}}{2 \sqrt{2}}\right)\right]
\end{gathered}
$$

The projection of these on $z=0$ plane is as:

Figure 12. D zone

Since

$$
V_{2}(\Delta)=\iint_{D} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d y d x
$$

and

$$
z=\sqrt{1+x^{2}-y^{2}}
$$

$$
\begin{gather*}
V_{2}(\Delta)=\iint_{D} \sqrt{\frac{1+2 x^{2}}{1+x^{2}-y^{2}}} d y d x \\
=\int_{0}^{1 / 2}\left(\int_{0}^{-\sqrt{5 x}+\sqrt{2-3 x^{2}} / 2} \sqrt{\frac{1+2 x^{2}}{1+x^{2}-y^{2}}} d y\right) d x \tag{2.2}
\end{gather*}
$$

On the other hand, the interior angles of this triangle is;

$$
\begin{gathered}
P_{1} \otimes P_{2}=\left|\begin{array}{ccc}
-e_{1} & e_{2} & e_{3} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 1
\end{array}\right|=-\frac{e_{1}}{\sqrt{2}} \text { is timelike when } N_{3}=-e_{1}, \\
P_{2} \otimes P_{3}=\left|\begin{array}{ccc}
-e_{1} & e_{2} & e_{3} \\
0 & 0 & 1 \\
\frac{1}{2} & 0 & \frac{\sqrt{5}}{2}
\end{array}\right|=\frac{e_{2}}{2} \text { spacelike; } N_{1}=e_{2}, \\
P_{3} \otimes P_{1}=\left|\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{5}}{2} \\
0 & \frac{1}{\sqrt{2}}
\end{array} \frac{1}{\sqrt{2}}\right| \begin{array}{l}
e_{1} \\
e_{2}
\end{array} \left\lvert\, \begin{array}{l}
\frac{\sqrt{5}}{2 \sqrt{2}} e_{1}-\frac{1}{2 \sqrt{2}} e_{2}+\frac{1}{2 \sqrt{2}} e_{3} ; N_{2}=\left(\frac{\sqrt{5}}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \\
\left\langle N_{1}, N_{2}\right\rangle=-\frac{1}{\sqrt{3}}<0
\end{array}\right. \\
\left\langle N_{1}, N_{3}\right\rangle=0 \leq 0 \\
\left\langle N_{2}, N_{3}\right\rangle=\frac{\sqrt{5}}{\sqrt{3}}>0, \\
N_{1}=e_{2} \\
N_{2}=\frac{\sqrt{5} e_{1}-e_{2}+e_{3}}{\sqrt{3}} \\
N_{3}=-e_{1}
\end{gathered}
$$

since N_{1} spacelike N_{2} timelike, from Definition 2

$$
-\arcsin h\left(\left\langle N_{1}, N_{2}\right\rangle\right)=\bar{\theta}_{12} \Rightarrow \bar{\theta}_{12}=-\arcsin h\left(\frac{-1}{\sqrt{3}}\right),
$$

Since N_{1} spacelike N_{3} timelike, from Definition 2

$$
-\arcsin h\left(\left\langle N_{1}, N_{3}\right\rangle\right)=\bar{\theta}_{13} \Rightarrow \bar{\theta}_{13}=\arcsin h(0)=0,
$$

Since N_{2}, N_{3} timelike, from Definition 2

$$
-\arccos h\left(\left\langle N_{2}, N_{3}\right\rangle\right)=\bar{\theta}_{23} \Rightarrow \bar{\theta}_{23}=-\arccos h\left(\frac{\sqrt{5}}{\sqrt{3}}\right)
$$

are found. From Theorem 3

$$
\begin{equation*}
V_{2}(\Delta)=\bar{\theta}_{12}+\bar{\theta}_{13}+\bar{\theta}_{23}+c . \tag{2.3}
\end{equation*}
$$

By writing $V_{2}(\Delta)$ and $\bar{\theta}_{12}, \bar{\theta}_{13}, \bar{\theta}_{23}$ values on (2.2) to the place on (2.3)

$$
\begin{equation*}
c=V_{2}(\Delta)+\arcsin h\left(\frac{-1}{\sqrt{3}}\right)+\arccos h\left(\frac{\sqrt{5}}{\sqrt{3}}\right) \tag{2.4}
\end{equation*}
$$

is obtained.

Theorem 4

As $\theta_{12}, \theta_{13}, \theta_{23}$ angles are the interior angles of ${ }_{2} \Delta_{1}^{0}$

$$
V_{2}\left({ }_{2} \Delta_{1}^{0}\right)=\theta_{12}+\theta_{13}+\theta_{23}+V_{2}(\Delta)+\arcsin h\left(-\frac{1}{\sqrt{3}}\right)+\arccos h\left(\frac{\sqrt{5}}{\sqrt{3}}\right)
$$

Proof

It is seen by writing (2.4) as in $\varepsilon=1$ form on the place (2.1)

2.2. Area of triangle from ${ }_{1} \Delta_{2}^{0}$ type

Figure 13. Triangle from Δ_{2}^{0} type
${ }_{1} \Delta_{2}^{0}$ de-Sitter triangle is $\bar{\Delta}$, whose edges are

$$
\begin{gathered}
\alpha(t)=\left(0, \frac{\cos t-\sin t}{\sqrt{2}}, \frac{\cos t+\sin t}{\sqrt{2}}\right), \quad t \in\left[0, \frac{\pi}{4}\right] \\
\beta(s)=\left(\sqrt{3}(\cosh s-\sqrt{2} \sinh s), \frac{\sinh s}{\sqrt{2}}, \frac{(2 \sqrt{2} \cosh s-3 \sinh s)}{\sqrt{2}}\right), \quad s \in[0, \log (1+\sqrt{2})] \\
\gamma(u)=(\sinh u, 0, \cosh u), \quad u \in[0, \log (2+\sqrt{3})]
\end{gathered}
$$

whose corner point is

$$
P_{1}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), P_{2}=(0,0,1), P_{3}=(\sqrt{3}, 0,2)
$$

Let us show the simply closed area which is \bar{D} in Figure 14 obtained from the projection of $\bar{\Delta}$ edges to $z=0$ plane:

Figure 14. $\bar{\Delta}^{\text {area }}$
Since $\quad V_{2}(\bar{\Delta})=\iint_{D} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d y d x$
and

$$
\begin{gather*}
z=\sqrt{1+x^{2}-y^{2}} \\
V_{2}(\bar{\Delta})=\iint_{D} \sqrt{\frac{1+2 x^{2}}{1+x^{2}-y^{2}}} d y d x \\
\left.=\int_{0}^{\sqrt{3}} \int_{0}^{-2 x+\sqrt{12+2 x^{2}} / 2 \sqrt{3}} \sqrt{\frac{1+2 x^{2}}{1+x^{2}-y^{2}}} d y\right) d x \tag{2.5}
\end{gather*}
$$

On the other hand, the interior angles of this triangle is;

$$
P_{1} \otimes P_{2}=\left|\begin{array}{ccc}
-e_{1} & e_{2} & e_{3} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 1
\end{array}\right|=-\frac{e_{1}}{\sqrt{2}} \text { timelike; } N_{3}=-e_{1}
$$

$$
\begin{gathered}
P_{2} \otimes P_{3}=\left|\begin{array}{ccc}
-e_{1} & e_{2} & e_{3} \\
0 & 0 & 1 \\
\sqrt{3} & 0 & 2
\end{array}\right|=\sqrt{3} e_{2} \text { timelike; } N_{1}=e_{2}, \\
P_{3} \otimes P_{1}=\left|\begin{array}{rrr}
-e_{1} & e_{2} & e_{3} \\
\sqrt{3} & 0 & 2 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right|=\sqrt{2} e_{1}-\frac{\sqrt{3}}{\sqrt{2}} e_{2}+\frac{\sqrt{3}}{\sqrt{2}} e_{3} ; N_{2}=\left(\sqrt{2}, \frac{-\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}\right), \\
\left\langle N_{1}, N_{2}\right\rangle=-\frac{\sqrt{3}}{\sqrt{2}}<0 \\
\left\langle N_{1}, N_{3}\right\rangle=0 \leq 0 \\
\left\langle N_{2}, N_{3}\right\rangle=\sqrt{2}>0, \\
N_{1}=e_{2} \\
N_{2}=\frac{2 e_{1}-\sqrt{3} e_{2}+\sqrt{3} e_{3}}{\sqrt{2}} \\
N_{3}=-e_{1}
\end{gathered}
$$

and
Since N_{1}, N_{2} is spacelike, from Definition 2
$\arccos h\left(\left\langle N_{1}, N_{2}\right\rangle\right)=\theta_{12}^{\prime} \Rightarrow \theta_{12}^{\prime}=\arccos h\left(\sqrt{\frac{3}{2}}\right)$,

Since N_{1} is spacelike N_{3} is timelike, from Definition 2
$-\arcsin h\left(\left\langle N_{1}, N_{3}\right\rangle\right)=\theta_{13}^{\prime} \Rightarrow \theta_{13}^{\prime}=\arcsin h(0)=0$
Since N_{2} is spacelike and N_{3} is timelike, from Definition 2
$-\arcsin h\left(\left\langle N_{2}, N_{3}\right\rangle\right)=\theta_{23}^{\prime} \Rightarrow \theta_{23}^{\prime}=-\arcsin h(\sqrt{2})$
are found. From Theorem 3

$$
\begin{equation*}
V_{2}(\bar{\Delta})=\theta_{12}^{\prime}+\theta_{13}^{\prime}+\theta_{23}^{\prime}+c . \tag{2.6}
\end{equation*}
$$

If we write the values on (2.5) $V_{2}(\bar{\Delta})$ ve bu $\theta_{12}^{\prime}, \theta_{13}^{\prime}, \theta_{23}^{\prime}$ to the place on (2.6);
it is

$$
\begin{equation*}
c=V_{2}(\bar{\Delta})-\arccos h\left(\sqrt{\frac{3}{2}}\right)+\arcsin h(\sqrt{2}) \tag{2.7}
\end{equation*}
$$

Theorem 5

$\theta_{12}, \theta_{13}, \theta_{23}$ are the interior angles of ${ }_{1} \Delta_{2}^{0}$ triangle;

$$
V_{2}\left({ }_{1} \Delta_{2}^{0}\right)=\theta_{12}+\theta_{13}+\theta_{23}+V_{2}(\bar{\Delta})-\arccos h\left(\sqrt{\frac{3}{2}}\right)+\arcsin h(\sqrt{2})
$$

Proof

It is seen by writing (2.7) as in $\varepsilon=1$ form on the place (2.1)

REFERENCES

[1] Asmus, I., Duality Between Hyperbolic and de-Sitter Geometry, Cornell University, New York, (2008) 1-32.
[2] O'neil, B., Semi-Riemannian Geometry, AcademicPress., London, (1983) 46-49, 54-57, 108-114, 143-144.
[3] Suarez-Peiro, E., A SchlafliDifferential Formula for Implices in Semi-Riemannian Hyperquadrics, Gauss-Bonnet Formulas fo rSimplices in the de Sitter Sphere and the Dual Volume of a Hyperbolic Simplex, Pasicif Journal of Mathematics, 194-1 (2000) 229.
[4] Karlı̆̆a, B., Edgematrix of hyperbolic simplices, Geom. Dedicata, 109 (2004) 1-6.
[5] Karlığa, B., Yakut, A.T., Vertexangles of a simplex in hyperbolic space H^{n}, Geom. Dedicata, 120 (2006) 49-58.

[^0]: * Corresponding author. Email address: tmert@cumhuriyet.edu.tr
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Sivas Cumhuriyet University

