Araştırma Makalesi
BibTex RIS Kaynak Göster

Hemiplejik serebral palsili çocuklarda robotik yürüme eğitiminin yürüyüşe etkilerinin incelenmesi

Yıl 2017, Cilt: 4 Sayı: 1, 1 - 8, 30.03.0017

Öz

Amaç: Bu çalışmanın amacı spastik hemiplejik serebral palsili (SP) çocuklarda robotik yürüme eğitiminin, yürümenin zamanmesafe karakteristikleri ile hız ve enduransının geliştirilmesi üzerine etkilerini araştırmaktı.

Yöntem: Çalışmaya düzenli olarak haftada üç kez fizyoterapi ve rehabilitasyon programına devam eden 5-12 yaş arasındaki
20 spastik hemiplejik SP’li çocuk dahil edildi. Çocuklar kontrol ve robotik rehabilitasyon çalışma grubu olarak ikiye ayrıldı.
Tüm çocuklar üç ay boyunca haftada üç kez fizyoterapi ve rehabilitasyon programına katılırken, çalışma grubundaki çocuklar
ayrıca 330 dk/hafta Innowalk Pro ile yürüme eğitimine katıldılar. Üç aylık sürenin başlangıcında ve sonunda yürüyüşün
duruş fazı, sallanma fazı, çift destek süresi, tempo, adım uzunluğu ve ayak açısı incelendi. Yürüyüşün hızı ve enduransının
değerlendirilmesinde 10 m ve 6 dk yürüme testleri kullanıldı.

Bulgular: Çalışma grubundaki çocukların 10 m yürüme hızında (rahat hissettiği hızda) ve 6 dk yürüme mesafesinde (p<0,05),
kontrol grubundaki çocukların ise 6 dk yürüme mesafesinde tedavi sonrasında gelişme kaydedildi (p<0,05). Çalışma ve
kontrol grubundaki çocukların yürümenin zaman mesafe karakteristikleri, yürüme hız ve enduransları arasında hem tedavi
öncesinde hem de tedavi sonrasında gruplar arasında fark bulunamadı (p>0,05).

Sonuç: Hemiplejik SP’de yürüme daha çok alt ekstremite gücündeki kayıpla ilişkili olarak bozulmaktadır. Yürüme sırasında
paretik ekstremite kullanımı kuvvetlendirme ve denge egzersizleriyle geliştirilebilmektedir. Robotik yürüme eğitimi, yürüme
hızının ve hız algısının değiştirilmesinde yarar sağlamakta ve bireye özel oluşturulan fizyoterapi programına destekleyici olarak
kullanılması önerilmektedir.

Kaynakça

  • 1. Styer-Acevedo J. Physical therapy for the child with cerebral palsy. In: Pediatric Physical Therapy. Tecklin JS (Ed). 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999:107-162.
  • 2. Bayon C, Raya R, Lara SL, et al. Robotic therapies for children with cerebral palsy: a systematic review. Transl Biomed. 2016;7(1):44.
  • 3. Islam M, Nordstrand L, Holmström L, et al. Is outcome of constraint-induced movement therapy in unilateral cerebral palsy dependent on corticomotor projection pattern and brain lesion characteristics? Dev Med Child Neurol. 2014;56(3):252-258.
  • 4. Kuhnke N, Juenger H, Walther M, et al. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy? Dev Med Child Neurol. 2008;50(12):898-903.
  • 5. Damiano D. Meaningfulness of mean group results for determining the optimal motor rehabilitation program for an individual child with cerebral palsy. Dev Med Child Neurol. 2014;56(12):1141-1146.
  • 6. Fonseca ST, Holt KG, Fetters L, at al. Dynamic resources used in ambulation by children with spastic hemiplegic cerebral palsy: relationship to kinematics, energetics, and asymmetries. Phys Ther. 2004;84(4):344-354.
  • 7. Kitai Y, Haginoya K, Hirai S, et al. Outcome of hemiplegic cerebral palsy born at term depends on its etiology. Brain Dev. 2016;38(3):267-273.
  • 8. Held JM. Recovery of function after brain damage: theoretical implications for therapeutic intervention. In: Movement Science. Foundations for Physical Therapy in Rehabilitation. Carr JH and Shepherd RB (Eds). Maryland: Aspen Publisher; 1987:155-177.
  • 9. Torey GJ, Bjornson KF, McDonald C, et al. Clinical gait measures for ambulatory children with cerebral palsy: a review. J Prosthet Orthot. 2016;28(1): 2-12
  • 10. Diaz I, Gil JJ, Sanchez E. Lower-limb robotic rehabilitation: literature review and challenge. Journal of Robotics. 2011; doi:10.1155/2011/759764.
  • 11. Moreau N G, Bodkin WA, Bjornson K, et al. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy:systematic review and meta-analysis. Phys Ther. 2016;96(12):1938-1954.
  • 12. Abrantes JMCS, Santos LFF. Plantar pressure assessment: a new tool for postural instability diagnosis in multiple sclerosis. Jorge RMN et al (eds). Technologies for Medical Sciences, Lecture Notes in Computational Vision and Biomechanics1. 2012;(1):179-204.
  • 13. Thompson P, Beath T, Bell J et al. Test-retest reliability of the 10-metre fast walk test and 6- minute walk test in ambulatory school aged children with cerebral palsy. Dev Med Child. 2008; 50(5): 370-376.
  • 14. Maher CA, Williams MT, Olds TS. The sixminute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31(2):185-188.
  • 15. Innowalk Documentation - Made for Movement. http://ssl.onezero.no/innowalk/
  • 16. Eek MN, Tranberg R, Zugner R, et al. Muscle strength training to improve gait function in children with cerebral palsy. Dev Med Child Neurol. 2008;50:759-64.
  • 17. Ledebt A, Becher JG, Kapper J, et al. Balance training with visual feedback in children with hemiplegic cerebral palsy: effect on stance and gait. Motor Control. 2005;9:459-468.
  • 18. Simon AM, Gillespie RB, Ferris DP. Symmetrybased resistance as a novel means of lower limb rehabilitation. J Biomech. 2007;40(6):1286-1292.
  • 19. Meyns P, Van Gestel L, Leunissen I, et al. Macrostructural and microstructural brain lesions relate to gait pathology in children with cerebral palsy. Neurorehabil Neural Repair. 2016;30(9):817-833.
  • 20. Kim J, Park H, Damiano DL. An interactive treadmill under a novel control scheme for simulating overground walking by reducing anomalous force. IEEE/ASME Trans Mechatron. 2014;20(3):1-6.
  • 21. Yoon J, Park H-S, Damiano DL. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. J Neuroeng Rehabil. 2012;9(1):62.
  • 22. Miyai I, Suzuki M, Hatakenaka M, et al. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res. 2006;169(1):85-91.
  • 23. Poldrack R, Sabb F, Foerde K, et al. The neural correlates of motor skill automaticity. J Neurosci. 2005;25(22):5356-5364.
  • 24. Bulea TC, Kim J, Damiano DL, et al. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci. 2015;9:247.
  • 25. Lim H. Effect of the modulation of optic flow speed on gait parameters in children with hemiplegic cerebral palsy. J Phys Ther Sci. 2014;26(1):145-148.
  • 26. Wulf G, Raupach M, Pfeiffer F. Self-controlled observational practice enhances learning. Research Quarterly for Exercise and Sport. 2005;76:107-111.
  • 27. Aiken CA, Fairbrother JT, Post PG. The effects of self-controlled video feedback on the learning of the basketball set shot. Front Psychol. 2012;3(338):1-8.
Yıl 2017, Cilt: 4 Sayı: 1, 1 - 8, 30.03.0017

Öz

Kaynakça

  • 1. Styer-Acevedo J. Physical therapy for the child with cerebral palsy. In: Pediatric Physical Therapy. Tecklin JS (Ed). 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999:107-162.
  • 2. Bayon C, Raya R, Lara SL, et al. Robotic therapies for children with cerebral palsy: a systematic review. Transl Biomed. 2016;7(1):44.
  • 3. Islam M, Nordstrand L, Holmström L, et al. Is outcome of constraint-induced movement therapy in unilateral cerebral palsy dependent on corticomotor projection pattern and brain lesion characteristics? Dev Med Child Neurol. 2014;56(3):252-258.
  • 4. Kuhnke N, Juenger H, Walther M, et al. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy? Dev Med Child Neurol. 2008;50(12):898-903.
  • 5. Damiano D. Meaningfulness of mean group results for determining the optimal motor rehabilitation program for an individual child with cerebral palsy. Dev Med Child Neurol. 2014;56(12):1141-1146.
  • 6. Fonseca ST, Holt KG, Fetters L, at al. Dynamic resources used in ambulation by children with spastic hemiplegic cerebral palsy: relationship to kinematics, energetics, and asymmetries. Phys Ther. 2004;84(4):344-354.
  • 7. Kitai Y, Haginoya K, Hirai S, et al. Outcome of hemiplegic cerebral palsy born at term depends on its etiology. Brain Dev. 2016;38(3):267-273.
  • 8. Held JM. Recovery of function after brain damage: theoretical implications for therapeutic intervention. In: Movement Science. Foundations for Physical Therapy in Rehabilitation. Carr JH and Shepherd RB (Eds). Maryland: Aspen Publisher; 1987:155-177.
  • 9. Torey GJ, Bjornson KF, McDonald C, et al. Clinical gait measures for ambulatory children with cerebral palsy: a review. J Prosthet Orthot. 2016;28(1): 2-12
  • 10. Diaz I, Gil JJ, Sanchez E. Lower-limb robotic rehabilitation: literature review and challenge. Journal of Robotics. 2011; doi:10.1155/2011/759764.
  • 11. Moreau N G, Bodkin WA, Bjornson K, et al. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy:systematic review and meta-analysis. Phys Ther. 2016;96(12):1938-1954.
  • 12. Abrantes JMCS, Santos LFF. Plantar pressure assessment: a new tool for postural instability diagnosis in multiple sclerosis. Jorge RMN et al (eds). Technologies for Medical Sciences, Lecture Notes in Computational Vision and Biomechanics1. 2012;(1):179-204.
  • 13. Thompson P, Beath T, Bell J et al. Test-retest reliability of the 10-metre fast walk test and 6- minute walk test in ambulatory school aged children with cerebral palsy. Dev Med Child. 2008; 50(5): 370-376.
  • 14. Maher CA, Williams MT, Olds TS. The sixminute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31(2):185-188.
  • 15. Innowalk Documentation - Made for Movement. http://ssl.onezero.no/innowalk/
  • 16. Eek MN, Tranberg R, Zugner R, et al. Muscle strength training to improve gait function in children with cerebral palsy. Dev Med Child Neurol. 2008;50:759-64.
  • 17. Ledebt A, Becher JG, Kapper J, et al. Balance training with visual feedback in children with hemiplegic cerebral palsy: effect on stance and gait. Motor Control. 2005;9:459-468.
  • 18. Simon AM, Gillespie RB, Ferris DP. Symmetrybased resistance as a novel means of lower limb rehabilitation. J Biomech. 2007;40(6):1286-1292.
  • 19. Meyns P, Van Gestel L, Leunissen I, et al. Macrostructural and microstructural brain lesions relate to gait pathology in children with cerebral palsy. Neurorehabil Neural Repair. 2016;30(9):817-833.
  • 20. Kim J, Park H, Damiano DL. An interactive treadmill under a novel control scheme for simulating overground walking by reducing anomalous force. IEEE/ASME Trans Mechatron. 2014;20(3):1-6.
  • 21. Yoon J, Park H-S, Damiano DL. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. J Neuroeng Rehabil. 2012;9(1):62.
  • 22. Miyai I, Suzuki M, Hatakenaka M, et al. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res. 2006;169(1):85-91.
  • 23. Poldrack R, Sabb F, Foerde K, et al. The neural correlates of motor skill automaticity. J Neurosci. 2005;25(22):5356-5364.
  • 24. Bulea TC, Kim J, Damiano DL, et al. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci. 2015;9:247.
  • 25. Lim H. Effect of the modulation of optic flow speed on gait parameters in children with hemiplegic cerebral palsy. J Phys Ther Sci. 2014;26(1):145-148.
  • 26. Wulf G, Raupach M, Pfeiffer F. Self-controlled observational practice enhances learning. Research Quarterly for Exercise and Sport. 2005;76:107-111.
  • 27. Aiken CA, Fairbrother JT, Post PG. The effects of self-controlled video feedback on the learning of the basketball set shot. Front Psychol. 2012;3(338):1-8.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Meltem Yazıcı

Ayşe Livanelioğlu Bu kişi benim

Kıvılcım Gücüyener Bu kişi benim

Erkan Sümer Bu kişi benim

Yavuz Yakut Bu kişi benim

Yayımlanma Tarihi 1 Nisan 17
Gönderilme Tarihi 2 Ocak 17
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 1

Kaynak Göster

Vancouver Yazıcı M, Livanelioğlu A, Gücüyener K, Sümer E, Yakut Y. Hemiplejik serebral palsili çocuklarda robotik yürüme eğitiminin yürüyüşe etkilerinin incelenmesi. JETR. 4(1):1-8.