Kısa Rapor
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 21 Sayı: 3, 412 - 416, 15.12.2023
https://doi.org/10.20518/tjph.1316091

Öz

Kaynakça

  • Baker-Austin C, Trinanes J, Salmenlinna S, Löfdahl M, Siitonen A, Taylor N, et al. Heat Wave–Associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016; 22(7):1216-1220. https://doi.org/10.3201/eid2207.151996
  • Galanis E, Otterstatter M, Taylor M. Measuring the impact of sea surface temperature on the human incidence of Vibrio sp. infection in British Columbia, Canada, 1992–2017. Environ Health. 2020; 9, 58. https://doi.org/10.1186/s12940-020-00605-x
  • Gildas Hounmanou Y, Engberg J, Bjerre K, Holt H, Olesen B, Voldstedlund M, et al. Correlation of High Seawater Temperature with Vibrio and Shewanella Infections, Denmark, 2010–2018. Emerg Infect Dis. 2023; 29(3):605-608. https://doi.org/10.3201/eid2903.221568
  • Martinez-Urtaza J, Trinanes J, Abanto M, Lozano-Leon A, Llovo-Taboada J, Garcia-Campello M, et al. Epidemic Dynamics of Vibrio parahaemolyticus Illness in a Hotspot of Disease Emergence, Galicia, Spain. Emerg Infect Dis. 2018;24(5):852-859. https://doi.org/10.3201/eid2405.171700
  • Paz S, Bisharat, N, Paz E., Kidar O, Cohen D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res. 2007;103(3):390-6. doi: 10.1016/j.envres.2006.07.002.
  • RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020 URL http://www.rstudio.com/
  • Beck H, Zimmermann N, McVicar T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018; 5, 180214 https://doi.org/10.1038/sdata.2018.214
  • Bedritsky AI. (Ed.) Russian Hydrometeorological Encyclopedia; Letnii Sad SPB: Moscow, Russia; 2008;1: 336p. [In Russ.]
  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332(6026), 220–224, doi:10.1126/science.1201224
  • Vezzulli L. Global expansion of Vibrio spp. in hot water. Environ Microbiol. Rep. 2022; 15(2):77-79. doi: 10.1111/1758-2229.13135. 151996
  • Shartova N, Mironova V, Zelikhina S, Korennoy F, Grishchenko M Spatial patterns of West Nile virus distribution in the Volgograd region of Russia, a territory with long-existing foci. PLoS Negl Trop Dis. 2022; 16(1): e0010145. https://doi.org/10.1371/journal.pntd.0010145

Heat-wave associated vibriosis in Russia, 2003-2021

Yıl 2023, Cilt: 21 Sayı: 3, 412 - 416, 15.12.2023
https://doi.org/10.20518/tjph.1316091

Öz

Objectives: Noteworthy peaks of non-cholera vibriosis occurred in Russia’s Rostov and Volgograd regions in 2007 and 2010. The origins of these emergent vibrio cases have not been fully understood. Here, we investigate a possible link between the heat wave event and disease emergence.

Methods: This study employed Pearson correlation and regression analyses to identify the linkage between ambient temperature and Vibrio cases.

Results: The correlation test between the mean summer air temperatures for both regions and the Vibrio-infectious cases per year, shows a significant correlation between the mean summer temperature and the infection: r= 0.62 (p=0.023) for the Rostov region and r = 0.78 (p=0.012) for the Volgograd region.

Conclusion: The heat waves in the summers of 2007 and 2010 suggest having facilitated the upsurge of V. cholerae non-cholera diseases. The warming tendency has to be considered in predicting outbreaks.

Kaynakça

  • Baker-Austin C, Trinanes J, Salmenlinna S, Löfdahl M, Siitonen A, Taylor N, et al. Heat Wave–Associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016; 22(7):1216-1220. https://doi.org/10.3201/eid2207.151996
  • Galanis E, Otterstatter M, Taylor M. Measuring the impact of sea surface temperature on the human incidence of Vibrio sp. infection in British Columbia, Canada, 1992–2017. Environ Health. 2020; 9, 58. https://doi.org/10.1186/s12940-020-00605-x
  • Gildas Hounmanou Y, Engberg J, Bjerre K, Holt H, Olesen B, Voldstedlund M, et al. Correlation of High Seawater Temperature with Vibrio and Shewanella Infections, Denmark, 2010–2018. Emerg Infect Dis. 2023; 29(3):605-608. https://doi.org/10.3201/eid2903.221568
  • Martinez-Urtaza J, Trinanes J, Abanto M, Lozano-Leon A, Llovo-Taboada J, Garcia-Campello M, et al. Epidemic Dynamics of Vibrio parahaemolyticus Illness in a Hotspot of Disease Emergence, Galicia, Spain. Emerg Infect Dis. 2018;24(5):852-859. https://doi.org/10.3201/eid2405.171700
  • Paz S, Bisharat, N, Paz E., Kidar O, Cohen D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res. 2007;103(3):390-6. doi: 10.1016/j.envres.2006.07.002.
  • RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020 URL http://www.rstudio.com/
  • Beck H, Zimmermann N, McVicar T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018; 5, 180214 https://doi.org/10.1038/sdata.2018.214
  • Bedritsky AI. (Ed.) Russian Hydrometeorological Encyclopedia; Letnii Sad SPB: Moscow, Russia; 2008;1: 336p. [In Russ.]
  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332(6026), 220–224, doi:10.1126/science.1201224
  • Vezzulli L. Global expansion of Vibrio spp. in hot water. Environ Microbiol. Rep. 2022; 15(2):77-79. doi: 10.1111/1758-2229.13135. 151996
  • Shartova N, Mironova V, Zelikhina S, Korennoy F, Grishchenko M Spatial patterns of West Nile virus distribution in the Volgograd region of Russia, a territory with long-existing foci. PLoS Negl Trop Dis. 2022; 16(1): e0010145. https://doi.org/10.1371/journal.pntd.0010145
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Kısa Rapor
Yazarlar

Vadim Leonov 0000-0002-7364-7783

Erken Görünüm Tarihi 15 Aralık 2023
Yayımlanma Tarihi 15 Aralık 2023
Gönderilme Tarihi 17 Haziran 2023
Kabul Tarihi 13 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 21 Sayı: 3

Kaynak Göster

APA Leonov, V. (2023). Heat-wave associated vibriosis in Russia, 2003-2021. Turkish Journal of Public Health, 21(3), 412-416. https://doi.org/10.20518/tjph.1316091
AMA Leonov V. Heat-wave associated vibriosis in Russia, 2003-2021. TJPH. Aralık 2023;21(3):412-416. doi:10.20518/tjph.1316091
Chicago Leonov, Vadim. “Heat-Wave Associated Vibriosis in Russia, 2003-2021”. Turkish Journal of Public Health 21, sy. 3 (Aralık 2023): 412-16. https://doi.org/10.20518/tjph.1316091.
EndNote Leonov V (01 Aralık 2023) Heat-wave associated vibriosis in Russia, 2003-2021. Turkish Journal of Public Health 21 3 412–416.
IEEE V. Leonov, “Heat-wave associated vibriosis in Russia, 2003-2021”, TJPH, c. 21, sy. 3, ss. 412–416, 2023, doi: 10.20518/tjph.1316091.
ISNAD Leonov, Vadim. “Heat-Wave Associated Vibriosis in Russia, 2003-2021”. Turkish Journal of Public Health 21/3 (Aralık 2023), 412-416. https://doi.org/10.20518/tjph.1316091.
JAMA Leonov V. Heat-wave associated vibriosis in Russia, 2003-2021. TJPH. 2023;21:412–416.
MLA Leonov, Vadim. “Heat-Wave Associated Vibriosis in Russia, 2003-2021”. Turkish Journal of Public Health, c. 21, sy. 3, 2023, ss. 412-6, doi:10.20518/tjph.1316091.
Vancouver Leonov V. Heat-wave associated vibriosis in Russia, 2003-2021. TJPH. 2023;21(3):412-6.

13955                                        13956                                                             13958                                       13959                                        28911


TURKISH JOURNAL OF PUBLIC HEALTH - TURK J PUBLIC HEALTH. online-ISSN: 1304-1096 

Copyright holder Turkish Journal of Public Health. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International LicenseCreative Commons License