Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 1 Sayı: 2, 56 - 62, 15.08.2019

Öz

Kaynakça

  • 1. Lessell S. Friendly fire: neurogenic visual loss from radiation therapy. J Neuro-ophthalmol 2004;24:243-250.
  • 2. Roden D, Bosley TM, Fowble B, et al. Delayed radiation injury to the retrobulbar optic nerves and chiasm. Clinical syndrome and treatment with hyperbaric oxygen and corticosteroids. Ophthalmology 1990;97:346-351.
  • 3. Lampert PW, Davis RL. Delayed effects of radiation on the human central nervous system: ‘‘Early’’ and ‘‘late’’ delayed reactions. Neurology 1964;14:912-7.
  • 4. Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107(2):370-4.
  • 5. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273-82.
  • 6. Meyer R, Rogers MA, Hornsey S. A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer 1986;53:221-3.
  • 7. Hopewell JW, van der Kogel AJ. Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 1999;33:265-75.
  • 8. van der Kogel AJ. Radiation-induced damage in the central nervous system: An interpretation of target cell responses. Br J Cancer 1986;53:207-17.
  • 9. Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology 1985;92:1118-26.
  • 10. Indaram M, Ali FS, Levin MH. In search of a treatment for radiation-induced optic neuropathy. Curr Treat Options Neurol. 2015;17(1):325.
  • 11. Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21(1):109-22.
  • 12. Marks LB, Yorke ED, Jackson A, et al: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010;76(suppl3):S10-S19.
  • 13. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95-100.
  • 14. Grzybowski A, Zülsdorff M, Wilhelm H, Tonagel F. Toxic optic neuropathies: an updated review. Acta Ophthalmol. 2015;93(5):402-10.
  • 15. Harris JR, Levene MB. Visual complications following irradiation for pituitary adenomas and craniopharyngiomas. Radiology. 1976;120(1):167-71.
  • 16. van den Bergh AC, Schoorl MA, Dullaart RP, et al. Lack of radiation optic neuropathy in 72 patients treated for pituitary adenoma. J Neuroophthalmol. 2004;24(3):200-5.
  • 17. Ove R, Kelman S, Amin PP, Chin LS. Preservation of visual fields after peri-sellar gamma-knife radiosurgery. Int J Cancer. 2000;90(6):343-50.
  • 18. Stafford SL, Pollock BE, Leavitt JA, et al. A study of the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2003;55:1177-81.
  • 19. Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic neurosurgery. J Neurosurg 1998;88:43-50.
  • 20. Pollock BE, Link MJ, Leavitt JA, Stafford SL. Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery. 2014;75(4):456-60.
  • 21. Hiniker SM, Modlin LA, Choi CY, et al. Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol. 2016;26(2):97-104.
  • 22. Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215-22.
  • 23. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101.
  • 24. Delanian S, Lefaix J-L. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 2007;17:99-107.
  • 25. Happold C, Ernemann U, Roth P, et al Anticoagulation for radiation-induced neurotoxicity revisited. J Neurooncol. 2008;90(3):357-62.
  • 26. Glantz MJ, Burger PC, Friedman AH, et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020-7. 27. Kim JH, Brown SL, Kolozsvary A, et al. Modification of radiation injury by ramipril, inhibitor of angiotensinconverting enzyme, on optic neuropathy in the rat. Radiat Res. 2004;161(2):137-42.
  • 28. Shields CL, Demirci H, Marr BP, et al. Intravitreal triamcinolone acetonide for acute radiation papillopathy. Retina. 2006;26(5):537-44.
  • 29. Seibel I, Hager A, Riechardt AI, et al. Antiangiogenic or corticosteroid treatment in patients with radiation maculopathy after proton beam therapy for uveal melanoma. Am J Ophthalmol. 2016;168:31-39.
  • 30. Levin VL, Bidaut L, Hou P, et al. Randomized doubleblind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487-95.
  • 31. Taylor J, Gerstner ER. Anti-angiogenic therapy in highgrade glioma (treatment and toxicity). Curr Treat Options Neurol. 2013;15(3):328-37.
  • 32. Finger PT, Chin KJ. Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: secondary to plaque radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):789-98.
  • 33. Borruat F-X, Schatz NJ, Glaser JS, et al. Radiation optic neuropathy: Report of cases, role of hyperbaric oxygen therapy and literature review. Neuroophthalmology 1996;16:255-66.34. Malik A, Golnik K. Hyperbaric oxygen therapy in the treatment of radiation optic neuropathy. J Neuroophthalmol. 2012;32(2):128-31.
  • 35. Levy RL, Miller NR. Hyperbaric oxygen therapy for radiation-induced optic neuropathy. Ann Acad Med Singapore. 2006;35(3):151-7.

RADIATION-INDUCED OPTIC NEUROPATHY

Yıl 2019, Cilt: 1 Sayı: 2, 56 - 62, 15.08.2019

Öz



Radiation-induced
optic neuropathy (RION) is a disabling late complication of radiotherapy
leading to irreversible severe visual impairment or even total visual loss
which may affect one or both eyes. Although not fully understood yet, RION is
proposed to be a consequence of endothelial and neural cell injury with
resultant necrosis. Risk factors include the patient and disease related
factors, radiotherapy technique, per fraction and total radiotherapy doses.
Currently there is no well-established treatment modality for RION, and usually
the various drug therapies fail to reverse the visual loss. Therefore,
currently the simplest but most effective treatment of RION is prevention of
its occurrence by utilizing more sophisticated radiotherapy techniques and
strict adherence to the published dose constraints for optic apparatus. Present
review mainly aims to provide an overview of the currently accessible evidence
on pathogenesis, risk factors, and treatment of RION.

Kaynakça

  • 1. Lessell S. Friendly fire: neurogenic visual loss from radiation therapy. J Neuro-ophthalmol 2004;24:243-250.
  • 2. Roden D, Bosley TM, Fowble B, et al. Delayed radiation injury to the retrobulbar optic nerves and chiasm. Clinical syndrome and treatment with hyperbaric oxygen and corticosteroids. Ophthalmology 1990;97:346-351.
  • 3. Lampert PW, Davis RL. Delayed effects of radiation on the human central nervous system: ‘‘Early’’ and ‘‘late’’ delayed reactions. Neurology 1964;14:912-7.
  • 4. Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107(2):370-4.
  • 5. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273-82.
  • 6. Meyer R, Rogers MA, Hornsey S. A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer 1986;53:221-3.
  • 7. Hopewell JW, van der Kogel AJ. Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 1999;33:265-75.
  • 8. van der Kogel AJ. Radiation-induced damage in the central nervous system: An interpretation of target cell responses. Br J Cancer 1986;53:207-17.
  • 9. Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology 1985;92:1118-26.
  • 10. Indaram M, Ali FS, Levin MH. In search of a treatment for radiation-induced optic neuropathy. Curr Treat Options Neurol. 2015;17(1):325.
  • 11. Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21(1):109-22.
  • 12. Marks LB, Yorke ED, Jackson A, et al: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010;76(suppl3):S10-S19.
  • 13. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95-100.
  • 14. Grzybowski A, Zülsdorff M, Wilhelm H, Tonagel F. Toxic optic neuropathies: an updated review. Acta Ophthalmol. 2015;93(5):402-10.
  • 15. Harris JR, Levene MB. Visual complications following irradiation for pituitary adenomas and craniopharyngiomas. Radiology. 1976;120(1):167-71.
  • 16. van den Bergh AC, Schoorl MA, Dullaart RP, et al. Lack of radiation optic neuropathy in 72 patients treated for pituitary adenoma. J Neuroophthalmol. 2004;24(3):200-5.
  • 17. Ove R, Kelman S, Amin PP, Chin LS. Preservation of visual fields after peri-sellar gamma-knife radiosurgery. Int J Cancer. 2000;90(6):343-50.
  • 18. Stafford SL, Pollock BE, Leavitt JA, et al. A study of the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2003;55:1177-81.
  • 19. Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic neurosurgery. J Neurosurg 1998;88:43-50.
  • 20. Pollock BE, Link MJ, Leavitt JA, Stafford SL. Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery. 2014;75(4):456-60.
  • 21. Hiniker SM, Modlin LA, Choi CY, et al. Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol. 2016;26(2):97-104.
  • 22. Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215-22.
  • 23. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101.
  • 24. Delanian S, Lefaix J-L. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 2007;17:99-107.
  • 25. Happold C, Ernemann U, Roth P, et al Anticoagulation for radiation-induced neurotoxicity revisited. J Neurooncol. 2008;90(3):357-62.
  • 26. Glantz MJ, Burger PC, Friedman AH, et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020-7. 27. Kim JH, Brown SL, Kolozsvary A, et al. Modification of radiation injury by ramipril, inhibitor of angiotensinconverting enzyme, on optic neuropathy in the rat. Radiat Res. 2004;161(2):137-42.
  • 28. Shields CL, Demirci H, Marr BP, et al. Intravitreal triamcinolone acetonide for acute radiation papillopathy. Retina. 2006;26(5):537-44.
  • 29. Seibel I, Hager A, Riechardt AI, et al. Antiangiogenic or corticosteroid treatment in patients with radiation maculopathy after proton beam therapy for uveal melanoma. Am J Ophthalmol. 2016;168:31-39.
  • 30. Levin VL, Bidaut L, Hou P, et al. Randomized doubleblind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487-95.
  • 31. Taylor J, Gerstner ER. Anti-angiogenic therapy in highgrade glioma (treatment and toxicity). Curr Treat Options Neurol. 2013;15(3):328-37.
  • 32. Finger PT, Chin KJ. Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: secondary to plaque radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):789-98.
  • 33. Borruat F-X, Schatz NJ, Glaser JS, et al. Radiation optic neuropathy: Report of cases, role of hyperbaric oxygen therapy and literature review. Neuroophthalmology 1996;16:255-66.34. Malik A, Golnik K. Hyperbaric oxygen therapy in the treatment of radiation optic neuropathy. J Neuroophthalmol. 2012;32(2):128-31.
  • 35. Levy RL, Miller NR. Hyperbaric oxygen therapy for radiation-induced optic neuropathy. Ann Acad Med Singapore. 2006;35(3):151-7.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Erkan Topkan 0000-0001-8120-7123

Adil Özyılkan Bu kişi benim

Yayımlanma Tarihi 15 Ağustos 2019
Gönderilme Tarihi 7 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 2

Kaynak Göster

APA Topkan, E., & Özyılkan, A. (2019). RADIATION-INDUCED OPTIC NEUROPATHY. Troia Medical Journal, 1(2), 56-62.
AMA Topkan E, Özyılkan A. RADIATION-INDUCED OPTIC NEUROPATHY. Troia Med J. Ağustos 2019;1(2):56-62.
Chicago Topkan, Erkan, ve Adil Özyılkan. “RADIATION-INDUCED OPTIC NEUROPATHY”. Troia Medical Journal 1, sy. 2 (Ağustos 2019): 56-62.
EndNote Topkan E, Özyılkan A (01 Ağustos 2019) RADIATION-INDUCED OPTIC NEUROPATHY. Troia Medical Journal 1 2 56–62.
IEEE E. Topkan ve A. Özyılkan, “RADIATION-INDUCED OPTIC NEUROPATHY”, Troia Med J, c. 1, sy. 2, ss. 56–62, 2019.
ISNAD Topkan, Erkan - Özyılkan, Adil. “RADIATION-INDUCED OPTIC NEUROPATHY”. Troia Medical Journal 1/2 (Ağustos 2019), 56-62.
JAMA Topkan E, Özyılkan A. RADIATION-INDUCED OPTIC NEUROPATHY. Troia Med J. 2019;1:56–62.
MLA Topkan, Erkan ve Adil Özyılkan. “RADIATION-INDUCED OPTIC NEUROPATHY”. Troia Medical Journal, c. 1, sy. 2, 2019, ss. 56-62.
Vancouver Topkan E, Özyılkan A. RADIATION-INDUCED OPTIC NEUROPATHY. Troia Med J. 2019;1(2):56-62.